Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer methacrylate copolymers

Figure 7.6 Chemical shift (from hexamethyldisiloxane) for acrylonitrile-methyl methacrylate copolymers of the indicated methyl methacylate (Mj) content. Methoxyl resonances are labeled as to the triad source. [From R. Chujo, H. Ubara, and A. Nishioka, Polym. J. 3 670 (1972).]... Figure 7.6 Chemical shift (from hexamethyldisiloxane) for acrylonitrile-methyl methacrylate copolymers of the indicated methyl methacylate (Mj) content. Methoxyl resonances are labeled as to the triad source. [From R. Chujo, H. Ubara, and A. Nishioka, Polym. J. 3 670 (1972).]...
Suspension Polymerization. Suspension polymerisation yields polymer in the form of tiny beads, which ate primarily used as mol ding powders and ion-exchange resins. Most suspension polymers prepared as mol ding powders are poly(methyl methacrylate) copolymers containing up to 20% acrylate for reduced btittieness and improved processibiUty are also common. [Pg.169]

The most common VI improvers are methacrylate polymers and copolymers, acrylate polymers (see Acrylic ester polymers), olefin polymers and copolymers, and styrene—butadiene copolymers. The degree of VI improvement from these materials is a function of the molecular weight distribution of the polymer. VI improvers are used in engine oils, automatic transmission fluids, multipurpose tractor fluids, hydrautic fluids, and gear lubricants. Their use permits the formulation of products that provide satisfactory lubrication over a much wider temperature range than is possible using mineral oils alone. [Pg.265]

A substantial fraction of commercially prepared methacrylic polymers are copolymers. Monomeric acryUc or methacrylic esters are often copolymerized with one another and possibly several other monomers. Copolymerization greatiy increases the range of available polymer properties. The aH-acryhc polymers tend to be soft and tacky the aH-methacryhc polymers tend to be hard and brittie. By judicious adjustment of the amount of each type of monomer, polymers can be prepared at essentially any desired hardness or flexibiUty. Small amounts of specially functionalized monomers are often copolymerized with methacrylic monomers to modify or improve the properties of the polymer directiy or by providing sites for further reactions. Table 9 lists some of the more common functional monomers used for the preparation of methacrylic copolymers. [Pg.264]

The type of initiator utilized for a solution polymerization depends on several factors, including the solubiUty of the initiator, the rate of decomposition of the initiator, and the intended use of the polymeric product. The amount of initiator used may vary from a few hundredths to several percent of the monomer weight. As the amount of initiator is decreased, the molecular weight of the polymer is increased as a result of initia ting fewer polymer chains per unit weight of monomer, and thus the initiator concentration is often used to control molecular weight. Organic peroxides, hydroperoxides, and azo compounds are the initiators of choice for the preparations of most methacrylic solution polymers and copolymers. [Pg.266]

The dynamic mechanical properties of VDC—VC copolymers have been studied in detail. The incorporation of VC units in the polymer results in a drop in dynamic modulus because of the reduction in crystallinity. However, the glass-transition temperature is raised therefore, the softening effect observed at room temperature is accompanied by increased brittleness at lower temperatures. These copolymers are normally plasticized in order to avoid this. Small amounts of plasticizer (2—10 wt %) depress T significantly without loss of strength at room temperature. At higher levels of VC, the T of the copolymer is above room temperature and the modulus rises again. A minimum in modulus or maximum in softness is usually observed in copolymers in which T is above room temperature. A thermomechanical analysis of VDC—AN (acrylonitrile) and VDC—MMA (methyl methacrylate) copolymer systems shows a minimum in softening point at 79.4 and 68.1 mol % VDC, respectively (86). [Pg.434]

In addition to acting as impact modifiers a number of polymeric additives may be considered as processing aids. These have similar chemical constitutions to the impact modifiers and include ABS, MBS, chlorinated polyethylene, acrylate-methacrylate copolymers and EVA-PVC grafts. Such materials are more compatible with the PVC and are primarily included to ensure more uniform flow and hence improve surface finish. They may also increase gelation rates. In the case of the compatible MBS polymers they have the special function already mentioned of balancing the refractive indices of the continuous and disperse phases of impact-modified compound. [Pg.342]

The main experimental techniques used to study the failure processes at the scale of a chain have involved the use of deuterated polymers, particularly copolymers, at the interface and the measurement of the amounts of the deuterated copolymers at each of the fracture surfaces. The presence and quantity of the deuterated copolymer has typically been measured using forward recoil ion scattering (FRES) or secondary ion mass spectroscopy (SIMS). The technique was originally used in a study of the effects of placing polystyrene-polymethyl methacrylate (PS-PMMA) block copolymers of total molecular weight of 200,000 Da at an interface between polyphenylene ether (PPE or PPO) and PMMA copolymers [1]. The PS block is miscible in the PPE. The use of copolymers where just the PS block was deuterated and copolymers where just the PMMA block was deuterated showed that, when the interface was fractured, the copolymer molecules all broke close to their junction points The basic idea of this technique is shown in Fig, I. [Pg.223]

Polyvinyl alcohol is a main ingredient in latex paints, hairsprays, shampoos, and glues. It forms polymers and copolymers with other monomers, such as vinyl acetate and methyl methacrylate... [Pg.236]

Ascher and Nemny 495) found that residues of triphenyltin acetate on glass, resulting from the evaporation of acetone solutions thereof, were, on contact to houseflies, less toxic with rising concentration. As triphenyltin acetate is likely to be a self-associated polymer in the solid state [similar to trimethyltin acetate (355)] and in concentrated solutions, it was suggested 495) that the monomer, which exists in dilute solutions, is toxic to insects, and the polymer, nontoxic. Interestingly, in this connection, a triphenyltin methacrylate copolymer has 470) a very low mammalian toxicity (acute, oral LDso for mice >2000 mg/kg). [Pg.45]

A salt of a polymer or copolymer of acrylic or methacrylic acid, in which the acid is neutralized with alkanolamines, alkylamines, or lithium salts [677], is suitable as a dispersing agent. [Pg.313]

A nonpolluting dispersing agent for drilling fluids [217-219] has been described. The agent is based on polymers or copolymers of unsaturated acids, such as acrylic acid or methacrylic acid, with suitable counter ions. [Pg.315]

Treatment of this polymer with TMSI under the same conditions employed for the reaction with S-b-tBM resulted in a quantitative production of MM-b-MA. The t-butyl signal in the NMR spectrum is now gone (Figure 3b), and the carbonyl band in the IR spectrum is further broadened and shifted to 1717 cm (Figure 4b). Titration for MA resulted in 0.583 meq COOH/g, in accord with the value of 0.56 meq/g calculated based on the amount of tBM present in the NMR spectrum. Conversion to the potassium methacrylate copolymer was straightforward. IR analysis of the product shows the carboxylate band at 1552 cm-1, and the ester band at 1729 cm-1 (Figure 4c). Assay for potassium (ICP) confirmed that the neutralization was quantitative. [Pg.289]

Methacrylate polymer, Nitric acid See Nitric acid Acrylonitrile-methacrylate copolymer... [Pg.404]

There are various requirements for impact-modified PVC. The most demanding is for outdoor sidings and window frames, where lifetimes of 20 years are expected. Because butadiene polymers or copolymers (e.g., acrylonitrile/butadiene/styrene (ABS), methyl methacrylate/butadiene/styrene (MBS)) are susceptible to UV degradation these polymers are usually not employed instead acrylate polymers are used for these applications. [Pg.114]

Chang, M., Colvin, M., and Rembaum, A. (1986) Acrolein and 2-hydroxyethyl methacrylate copolymer microspheres. /. Polym. Sci. Part C Polym. Lett. 24, 603-606. [Pg.1053]


See other pages where Polymer methacrylate copolymers is mentioned: [Pg.469]    [Pg.12]    [Pg.141]    [Pg.142]    [Pg.322]    [Pg.448]    [Pg.497]    [Pg.498]    [Pg.499]    [Pg.499]    [Pg.534]    [Pg.611]    [Pg.196]    [Pg.197]    [Pg.454]    [Pg.151]    [Pg.259]    [Pg.265]    [Pg.268]    [Pg.271]    [Pg.149]    [Pg.71]    [Pg.338]    [Pg.139]    [Pg.134]    [Pg.421]    [Pg.421]    [Pg.220]    [Pg.21]    [Pg.235]    [Pg.26]    [Pg.344]    [Pg.302]   


SEARCH



Acrylic plastics methacrylate polymers and copolymers

Copolymer methacrylate

Copolymers methacrylic

METHACRYLATE POLYMER

Methacrylate polymers and copolymers

Polymer copolymers

Polymer resin styrene-methacrylate copolymers

Polymers, methacrylates

© 2024 chempedia.info