Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer-Electrolyte PEMFCs

The most promising fuel cell for transportation purposes was initially developed in the 1960s and is called the proton-exchange membrane fuel cell (PEMFC). Compared with the PAFC, it has much greater power density state-of-the-art PEMFC stacks can produce in excess of 1 kWA. It is also potentially less expensive and, because it uses a thin solid polymer electrolyte sheet, it has relatively few sealing and corrosion issues and no problems associated tvith electrolyte dilution by the product water. [Pg.528]

Electro-catalysts which have various metal contents have been applied to the polymer electrolyte membrane fuel cell(PEMFC). For the PEMFCs, Pt based noble metals have been widely used. In case the pure hydrogen is supplied as anode fuel, the platinum only electrocatalysts show the best activity in PEMFC. But the severe activity degradation can occur even by ppm level CO containing fuels, i.e. hydrocarbon reformates[l-3]. To enhance the resistivity to the CO poison of electro-catalysts, various kinds of alloy catalysts have been suggested. Among them, Pt-Ru alloy catalyst has been considered one of the best catalyst in the aspect of CO tolerance[l-3]. [Pg.637]

Design parameters of the anode catalyst for the polymer electrolyte membrane fiiel cells were investigated in the aspect of active metal size and inter-metal distances. Various kinds of catalysts were prepared by using pretreated Ketjenblacks as support materials. The prepared electro-catalysts have the morphology such as the sizes of active metal are in the range from 2.0 to 2.8nm and the inter-metal distances are 5.0 to 14.2nm. The electro-catalysts were evaluated as an electrode of PEMFC. In Fig. 1, it looked as if there was a correlation between inter-metal distances and cell performance, i.e. the larger inter-metal distances are related to the inferior cell performance. [Pg.640]

The principle of the fuel cell was first demonstrated by Grove in 1839 [W. R. Grove, Phil. Mag. 14 (1839) 137]. Today, different schemes exist for utilizing hydrogen in electrochemical cells. We explain the two most important, namely the Polymer Electrolyte Membrane Fuel Cell (PEMFC) and the Solid Oxide Fuel Cell (SOFC). [Pg.341]

Membrane-type fuel cells. The electrolyte is a polymeric ion-exchange membrane the working temperatures are 60 to 100°C. Such systems were first used in Gemini spaceships. These fuel cells subsequently saw a rather broad development and are known as (solid) polymer electrolyte or proton-exchange membrane fuel cells (PEMFCs). [Pg.362]

PAFC PEMFC PFC PGM PHEV PISI PM POX ppm PPP Phosphoric-acid fuel cell Proton-exchange-membrane fuel cell Polymer-electrolyte membrane Perfluorocarbons Platinum-group metals Plug-in hybrid-electric vehicle Port-injection spark ignition Particulate matter Partial oxidation Parts per million Purchasing power parity... [Pg.667]

Jeske, M., Soltmann, C., Ellenberg, C., Wilhelm, M., Koch, D. and Grathwohl, G. 2007. Proton conducting membranes for the high temperature-polymer electrolyte membrane-fuel cell (HT-PEMFC) based on functionalized polysiloxanes. [Pg.182]

Song, M. K., Kim, Y. T. and Rhee, H. W. 2001. Composite polymer electrolyte membranes for high PEMFC performance. Proceedings of Electrochemical Society Meeting, San Francisco, CA. [Pg.184]

Figure 4.1 shows a schematic of a typical polymer electrolyte membrane fuel cell (PEMFC). A typical membrane electrode assembly (MEA) consists of a proton exchange membrane that is in contact with a cathode catalyst layer (CL) on one side and an anode CL on the other side they are sandwiched together between two diffusion layers (DLs). These layers are usually treated (coated) with a hydrophobic agent such as polytetrafluoroethylene (PTFE) in order to improve the water removal within the DL and the fuel cell. It is also common to have a catalyst-backing layer or microporous layer (MPL) between the CL and DL. Usually, bipolar plates with flow field (FF) channels are located on each side of the MFA in order to transport reactants to the... [Pg.192]

Because of its lower temperature and special polymer electrolyte membrane, the proton exchange membrane fuel cell (PEMFC) is well-suited for transportation, portable, and micro fuel cell applications. But the performance of these fuel cells critically depends on the materials used for the various cell components. Durability, water management, and reducing catalyst poisoning are important factors when selecting PEMFC materials. [Pg.447]

Proton exchange membrane fuel cells (PEMFCs) work with a polymer electrolyte in the form of a thin, permeable sheet. The PEMFCs, otherwise known as polymer electrolyte fuel cells (PEFC), are of particular importance for the use in mobile and small/medium-sized stationary applications (Pehnt, 2001). The PEM fuel cells are considered to be the most promising fuel cell for power generation (Kazim, 2000). [Pg.226]

Fig. 7.5 Polymer electrolyte membrane fuel cell (PEMFC)... Fig. 7.5 Polymer electrolyte membrane fuel cell (PEMFC)...
Figure 7.5 shows the polymer electrolyte membrane fuel cell (PEMFC). There are two porous metal plates connected in a circuit with a membrane between them. In... [Pg.227]

Polymer Electrolyte Membrane Fuel Cell (PEMFC) expensive catalysts required operates best at 60—90 °C... [Pg.22]

Fuel cells are typically classified by the type of electrolyte. Apart from certain specialty types, the five major types of fuel cells are alkaline fuel cell (AFC), polymer electrolyte fuel cell (PEMFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), and solid oxide fuel cell (SOFC). [Pg.25]

For higher temperature operation, a polybenzimid-azole-based polymer electrolyte may be preferred. The PEMFC structures have good mechanical integrity under compression and expansion from differential temperature and pressure gradients that occur during operation. This system has minimal materials problems, except for the cost and operation characteristics of the membrane. The PEMFC operates at 1 A/cm at 0.7 V. The electrode reactions in acidic media have been discussed above. [Pg.26]

In PEMFC systems, water is transported in both transversal and lateral direction in the cells. A polymer electrolyte membrane (PEM) separates the anode and the cathode compartments, however water is inherently transported between these two electrodes by absorption, desorption and diffusion of water in the membrane.5,6 In operational fuel cells, water is also transported by an electro-osmotic effect and thus transversal water content distribution in the membrane is determined as a result of coupled water transport processes including diffusion, electro-osmosis, pressure-driven convection and interfacial mass transfer. To establish water management method in PEMFCs, it is strongly needed to obtain fundamental understandings on water transport in the cells. [Pg.202]

Acid polymer membrane or Polymer Electrolyte Membrane or Proton Exchange Membrane fuel cells (also known as PEMFC)... [Pg.114]

Polymer electrolyte membrane fuel cell (PEMFC) 80-90 Polymer membrane (Nafion) Hydrogen, reformed methanol or methane 50-60 Transport, electro car, space flight, shipping... [Pg.37]


See other pages where Polymer-Electrolyte PEMFCs is mentioned: [Pg.182]    [Pg.78]    [Pg.605]    [Pg.625]    [Pg.625]    [Pg.637]    [Pg.653]    [Pg.657]    [Pg.507]    [Pg.568]    [Pg.299]    [Pg.205]    [Pg.150]    [Pg.51]    [Pg.237]    [Pg.398]    [Pg.528]    [Pg.18]    [Pg.71]    [Pg.271]    [Pg.201]    [Pg.208]    [Pg.219]    [Pg.225]    [Pg.354]    [Pg.403]    [Pg.271]    [Pg.240]   
See also in sourсe #XX -- [ Pg.89 , Pg.102 , Pg.133 , Pg.525 ]




SEARCH



PEMFC

Polymer PEMFCs

Polymer electrolyte membrane fuel cell PEMFC)

Polymer electrolyte membrane fuel cells PEMFCs)

© 2024 chempedia.info