Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer constraint

Fixman M 1974 Classical statistical mechanics of constraints a theorem and application to polymers Proc. Natl Acad. Sc/. 71 3050-3... [Pg.2281]

Level of enforcement of the incompressibility condition depends on the magnitude of the penalty parameter. If this parameter is chosen to be excessively large then the working equations of the scheme will be dominated by the incompressibility constraint and may become singular. On the other hand, if the selected penalty parameter is too small then the mass conservation will not be assured. In non-Newtonian flow problems, where shear-dependent viscosity varies locally, to enforce the continuity at the right level it is necessary to maintain a balance between the viscosity and the penalty parameter. To achieve this the penalty parameter should be related to the viscosity as A = Xorj (Nakazawa et al, 1982) where Ao is a large dimensionless parameter and tj is the local viscosity. The recommended value for Ao in typical polymer flow problems is about 10. ... [Pg.75]

This kind of perfect flexibility means that C3 may lie anywhere on the surface of the sphere. According to the model, it is not even excluded from Cj. This model of a perfectly flexible chain is not a realistic representation of an actual polymer molecule. The latter is subject to fixed bond angles and experiences some degree of hindrance to rotation around bonds. We shall consider the effect of these constraints, as well as the effect of solvent-polymer interactions, after we explore the properties of the perfectly flexible chain. Even in this revised model, we shall not correct for the volume excluded by the polymer chain itself. [Pg.49]

In addition to existing as helices in crystals, there is evidence that certain vinyl polymers also show some degree of regular alternation between trans and gauche conformations in solution. In solution, the chain is free from the sort of environmental constraints that operate in a crystal, so the length of the helical sequence in a dissolved isotactic vinyl polymer may be relatively short. [Pg.65]

A. E. Broderick (Union Carbide). HEC did not become a viable commercial product until the early 1960s. In addition to the general production problems and market development costs, new products face a variety of environmental controls in the 1990s that add more constraints to market development. None the less two more recentiy developed water-soluble polymers have achieved limited market acceptance and are described below. [Pg.320]

Nippon Zeon estimated that the break-even cost of its tire pyrolysis pilot plant was 0.25 per tire (29,30). One study indicates that pyrolysis of tires and other polymers should be considered as a means for disposing of scrap within environmental constraints. A plant processing 81,000 t/yr of scrap could be profitable, based on sales of reclaimed products (31). [Pg.14]

The stetic constraints imposed by the bulky ligands cause the propylene to bond almost entirely with a single orientation with respect to the growing polymer chain, CH2, which leads to the stereoregular product. [Pg.175]

The value that is added during light-and medium-engineering work is larger, and this usually means that the economic constraint on the choice of materials is less severe - a far greater proportion of the cost of the structure is that associated with labour or with production and fabrication. Stainless steels, most alumiruum alloys and most polymers cost between UK 500 and UK 5000 (US 750 and US 7500) per... [Pg.7]

FIQ. 1 Sketch of the BFM of polymer chains on the three-dimensional simple cubic lattice. Each repeat unit or effective monomer occupies eight lattice points. Elementary motions consist of random moves of the repeat unit by one lattice spacing in one lattice direction. These moves are accepted only if they satisfy the constraints that no lattice site is occupied more than once (excluded volume interaction) and that the bonds belong to a prescribed set of bonds. This set is chosen such that the model cannot lead to any moves where bonds should intersect, and thus it automatically satisfies entanglement constraints [51],... [Pg.516]

The properties of flexible polymer chains moving in porous structures, that is, in structures with geometric constraints such as tubes or slits, apart from their Tclevance for various applications such as filtration, gel permeation chromatography, oil recovery, etc., pose an exciting problem of statistical... [Pg.580]

The main predictions of the scaling theory [40], concerning the dynamics behavior of polymer chains in tubes, deal with a number of characteristic times the smallest time rtube measures the interval of essentially Rouse relaxation before the monomers feel the tube constraints significantly, 1 < Wt < Wrtube = and diffusion of an inner monomer is... [Pg.584]

A similar anomalous behavior has been detected also in 3d polymer melts but only for rather short chains [41] for longer chains, several regimes occur because of the onset of entanglement (reptation ) effects. In two dimensions, of course, the topological constraints experienced by a chain from... [Pg.594]

A polymer such as polyethylene is a long-chain molecule with repetitions of the same monomer. Due to topological constraints, the crystallization process of polymer chains is expected to be different from that of simple molecules as discussed so far [160]. [Pg.905]

Several compromises are involved in the selection of the correct particle size. On one hand, one desires the highest possible resolution in the shortest amount of time. Therefore, the smallest particle size should be chosen that still gives resolution of the polymer without causing excessive column back pressure. On the other hand, there are constraints on both the strength of the particle and the strength of the polymer. This section discusses the selection of the best particle size. [Pg.332]

Miscibility or compatibility provided by the compatibilizer or TLCP itself can affect the dimensional stability of in situ composites. The feature of ultra-high modulus and low viscosity melt of a nematic liquid crystalline polymer is suitable to induce greater dimensional stability in the composites. For drawn amorphous polymers, if the formed articles are exposed to sufficiently high temperatures, the extended chains are retracted by the entropic driving force of the stretched backbone, similar to the contraction of the stretched rubber network [61,62]. The presence of filler in the extruded articles significantly reduces the total extent of recoil. This can be attributed to the orientation of the fibers in the direction of drawing, which may act as a constraint for a certain amount of polymeric material surrounding them. [Pg.598]

Supply is related to cost. If basic materials become scarce, changes will follow. Thus constraints in the petroleum supply may affect the polymer industry, which is based almost entirely on petrochemicals. We can look for expanded use of paper-based materials to provide factors such as bulk, tensile properties, and thermal resistance combined with the low weights of proper barrier materials. Composites will continue to grow in quantity and complexity. [Pg.105]

Where chelant or chelant/polymer programs are used, typically, instructions are given to maintain a specific chelant reserve. In practice, this is not always achievable because of test method limitations and internal water chemistry constraints. [Pg.460]

The most common states of a pure substance are solid, liquid, or gas (vapor), state property See state function. state symbol A symbol (abbreviation) denoting the state of a species. Examples s (solid) I (liquid) g (gas) aq (aqueous solution), statistical entropy The entropy calculated from statistical thermodynamics S = k In W. statistical thermodynamics The interpretation of the laws of thermodynamics in terms of the behavior of large numbers of atoms and molecules, steady-state approximation The assumption that the net rate of formation of reaction intermediates is 0. Stefan-Boltzmann law The total intensity of radiation emitted by a heated black body is proportional to the fourth power of the absolute temperature, stereoisomers Isomers in which atoms have the same partners arranged differently in space, stereoregular polymer A polymer in which each unit or pair of repeating units has the same relative orientation, steric factor (P) An empirical factor that takes into account the steric requirement of a reaction, steric requirement A constraint on an elementary reaction in which the successful collision of two molecules depends on their relative orientation. [Pg.967]


See other pages where Polymer constraint is mentioned: [Pg.267]    [Pg.267]    [Pg.2365]    [Pg.2365]    [Pg.2597]    [Pg.75]    [Pg.166]    [Pg.167]    [Pg.307]    [Pg.308]    [Pg.262]    [Pg.408]    [Pg.433]    [Pg.3]    [Pg.2060]    [Pg.127]    [Pg.122]    [Pg.360]    [Pg.292]    [Pg.496]    [Pg.558]    [Pg.56]    [Pg.302]    [Pg.654]    [Pg.225]    [Pg.504]    [Pg.346]    [Pg.100]    [Pg.129]    [Pg.138]    [Pg.44]    [Pg.38]    [Pg.112]    [Pg.80]   
See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Alexander Polynomials as a Tool for Numerical Investigations of Polymers with Topological Constraints

Modeling flexible polymers with constraints

Plastic constraint polymers

Polymers with thickness constraint

Rotational constraints polymer conformation

© 2024 chempedia.info