Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer brushes controlling

Out of all the polymerization techniques used to attach polymer brushes, controlled radical polymerization techniques [151] such as NMRP, ATRP, and RAFT have received widespread attention. The growth of living polymer chains from surfaces ensures better control over the molecular weight distribution and the amount of attached polymer as compared to the conventional RP, which suffers from the unwanted bimolecular terminations. [Pg.277]

Figure 5.18 Staphylococcus aureus adsorption to the polymer brushes. Control surface ... Figure 5.18 Staphylococcus aureus adsorption to the polymer brushes. Control surface ...
The preparation of polymer brushes by controlled radical polymerization from appropriately functionalized polymer chains, surfaces or particles by a grafting from approach has recently attracted a lot of attention.742 743 The advantages of growing a polymer brush directly on a surface include well-defined grafts, when the polymerization kinetics exhibit living character, and stability due to covalent attachment of the polymer chains to the surface. Most work has used ATRP or NMP, though papers on the use of RAFT polymerization in this context also have begun to appear. [Pg.560]

The importance of polydispersity is an interesting clue that it may be possible to tailor the weak interactions between polymer brushes by controlled polydispersity, that is, designed mixtures of molecular weight. A mixture of two chain lengths in a flat tethered layer can be analyzed via the Alexander model since the extra chain length in the longer chains, like free chains, will not penetrate the denser, shorter brush. This is one aspect of the vertical segregation phenomenon discussed in the next section. [Pg.60]

The chain architecture and chemical structure could be modified by SCVCP leading to a facile, one-pot synthesis of surface-grafted branched polymers. The copolymerization gave an intermediate surface topography and film thickness between the polymer protrusions obtained from SCVP of an AB inimer and the polymer brushes obtained by ATRP of a conventional monomer. The difference in the Br content at the surface between hyperbranched, branched, and linear polymers was confirmed by XPS, suggesting the feasibility to control the surface chemical functionality. The principal result of the works is a demonstration of utility of the surface-initiated SCVP via ATRP to prepare surface-grafted hyperbranched and branched polymers with characteristic architecture and topography. [Pg.28]

By studying the properties of polymer layers on soHd surfaces it soon became obvious that not only is the chemical composition of the immobihzed polymer cmcial for the performance of the material, but so is its morphology. This has been recognized in various fields of applications e.g. stabihzation of small particles suspensions by attached polymer brush-type layers [159, 160], control of adhesion [161] or friction [162] and tailored stationary phases for chromatography [163-165]. [Pg.399]

In this method, a reactive group on the surface initiates the polymerization, and the propagating polymer chain grows from the surface (Fig. 9.19b). In principle, it can be employed with all polymerization types, and a number of papers have reported high amounts of immobihzed polymer using surface-initiated polymerization with various initiator/monomer systems. If controlled or Hving polymerization techniques are used, block copolymer or end-functionahzed polymer brush systems can be prepared in consecutive reaction steps (Fig. 9.19c). [Pg.401]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

In a series of papers, Matsuda et al. [291-295] employed RAFT-SIP with immobilized benzyl N,N-diethyldithiocarbamate to form polymer brushes from styrene, methacrylamides, acrylamides and acrylates, NIPAM and N-vinyl-2-pyrrolidone on various surfaces. The SIP is initiated by UV irradiation of the surface-bonded dithiocarbamates. Thermoresponsive polymer brushes were prepared by the polymerization of NIPAM and investigated by XPS, wetting experiments and mainly SPM [294]. Patterned polymer brush layers were also prepared. When chloro-methyl styrene was used as a comonomer, RAFT-SIP resulted in branching. By control of the branching, spatio-resolved hyperbranching of a controllable stem/ branch design was realized (Fig. 9.32) [293, 295]. [Pg.423]

The same aplies to polymer brushes. The use of SAMs as initiator systems for surface-initiated polymerization results in defined polymer brushes of known composition and morphology. The different polymerization techniques, from free radical to living ionic polymerizations and especially the recently developed controlled radical polymerization allows reproducible synthesis of strictly linear, hy-perbranched, dentritic or cross-linked polymer layer structures on solids. The added flexibility and functionality results in robust grafted supports with higher capacity and improved accessibility of surface functions. The collective and fast response of such layers could be used for the design of polymer-bonded catalytic systems with controllable activity. [Pg.434]

SIP-driven polymer brush library fabrication leverages the fact that the polymerization initiation species are permanently bound to the substrate. Since the initiators are tethered, controlled delivery of monomer solution to different areas of the substrate results in a grafted polymer library. In NIST work, initiators bound via chlorosilane SAMs to silicon substrates were suitable for conducting controlled atom transfer radical polymerization (ATRP) [53] and traditional UV free radical polymerization [54, 55]. Suitable monomers are delivered in solution to the surface via microfluidic channels, which enables control over both the monomer solution composition and the time in which the solution is in contact with the initiating groups. After the polymerization is complete, the microchannel is removed from the substrate (or vice versa). This fabrication scheme, termed microchannel confined SIP ([t-SIP), is shown in Fig. 10. In these illustrations, and in the examples discussed below, the microchannels above the substrate are approximately 1 cm wide, 5 cm long, and 300-500 [tm high. [Pg.77]

Husseman M, Malmstrom EE, McNamara M, Mate M, Mecerreyes D, Benoit DG, Hedrick JL, Mansky P, Huang E, RusseU TP, Hawker CJ (1999) Controlled synthesis of polymer brushes by Living free radical polymerization techniques. Macromolecules 32 1424-1431... [Pg.102]

The grafting of polymers to substrates has been studied for over fifty years and remains an important goal in polymer science. Recent work has focused on the synthesis of so-called polymer brushes whereby the polymer chains stretch out away from the substrate or interface [1-5]. This contemporary topic is a direct descendent of earlier work on organic graft copolymers in industry and academia. Research in this area is driven by the need to control the interfacial properties of films and the compatibility of blends. [Pg.48]

Among the two ionic polymerization techniques mentioned above, a living anionic polymerization should show the best possible control of polymer architecture and composition. Mono dispersed homopolymers, complex-block, graft, star, and miktoarm architectures have been accessible primarily by anionic polymerization methods [22]. They have been used to grow polymer brushes from various small particles such as silica gels graphite,carbon black, and flat surfaces [23-26]. Recent results have been reported on living anionic polymerizations on clay [27] and silica nanoparticles [28,29]. [Pg.113]


See other pages where Polymer brushes controlling is mentioned: [Pg.231]    [Pg.231]    [Pg.138]    [Pg.562]    [Pg.28]    [Pg.61]    [Pg.264]    [Pg.407]    [Pg.408]    [Pg.428]    [Pg.432]    [Pg.433]    [Pg.57]    [Pg.78]    [Pg.87]    [Pg.89]    [Pg.102]    [Pg.105]    [Pg.109]    [Pg.127]    [Pg.136]    [Pg.151]    [Pg.159]    [Pg.224]    [Pg.491]    [Pg.5]    [Pg.6]    [Pg.6]    [Pg.8]    [Pg.31]    [Pg.33]    [Pg.40]    [Pg.41]    [Pg.52]    [Pg.59]    [Pg.116]    [Pg.133]   


SEARCH



Polymer brushes

Polymer brushes controlled ring-opening

© 2024 chempedia.info