Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene concentration

Fig.5 Influence of polyethylene concentration on the conversion of brown coal (1),... Fig.5 Influence of polyethylene concentration on the conversion of brown coal (1),...
Figure 2. Temperature of the start of crystallization as a function of polyethylene concentration in xylene solution , LDPE A and , LDPE B... Figure 2. Temperature of the start of crystallization as a function of polyethylene concentration in xylene solution , LDPE A and , LDPE B...
J. David Brooks, Choosing Diluent Resins for a Glass Fiber Reinforced High Density Polyethylene Concentrate , 25th Annual... [Pg.82]

J. David Brooks, Choosing Diluent Resins for a Glass Fiber Reinforced High Density Polyethylene Concentrate , 25th Annual Technical Conference, 1970, Reinforced Plastics/Composites Division, The Society of the Plastics Industry, Inc., Washington, DC, 1970. [Pg.296]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

In some cases, particularly with iaactive metals, electrolytic cells are the primary method of manufacture of the fluoroborate solution. The manufacture of Sn, Pb, Cu, and Ni fluoroborates by electrolytic dissolution (87,88) is patented. A typical cell for continous production consists of a polyethylene-lined tank with tin anodes at the bottom and a mercury pool (ia a porous basket) cathode near the top (88). Pluoroboric acid is added to the cell and electrolysis is begun. As tin fluoroborate is generated, differences ia specific gravity cause the product to layer at the bottom of the cell. When the desired concentration is reached ia this layer, the heavy solution is drawn from the bottom and fresh HBP is added to the top of the cell continuously. The direct reaction of tin with HBP is slow but can be accelerated by passiag air or oxygen through the solution (89). The stannic fluoroborate is reduced by reaction with mossy tin under an iaert atmosphere. In earlier procedures, HBP reacted with hydrated stannous oxide. [Pg.168]

Hexafluorozirconic acid [12021 -95-3]], H2ZrP, is formed by dissolving freshly prepared oxide, fluoride, or carbonate of zirconium in aqueous HP. This acid is produced commercially in a concentration range of 10 to 47%. The acid can be stored at ambient temperatures in polyethylene or Teflon containers... [Pg.262]

Formic acid is commonly shipped in road or raH tankers or dmms. For storage of the 85% acid at lower temperatures, containers of stainless steel (ASTM grades 304, 316, or 321), high density polyethylene, polypropylene, or mbber-lined carbon steels can be used (34). For higher concentrations. Austenitic stainless steels (ASTM 316) are recommended. [Pg.504]

Available Forms. Phthalocyanines are available as powders, in paste, or Hquid forms. They can be dispersed in various media suitable for aqueous, nonaqueous, or multipurpose systems, eg, polyethylene, polyamide, or nitrocellulose. Inert materials like clay, barium sulfate, calcium carbonates, or aluminum hydrate are the most common soHd extenders. Predispersed concentrates of the pigments, like flushes, are interesting for manufacturers of paints and inks (156), who do not own grinding or dispersing equipment. Pigment—water pastes, ie, presscakes, containing 50—75% weight of water, are also available. [Pg.506]

Thermoplastics. The highest consumption of color concentrates is in thermoplastic resins, such as low and high density polyethylene, polypropylene, PVC, and polystyrene. Processing techniques for thermoplastics are usually based on dry color dispersion in a compatible resin (36). [Pg.515]

Criticality Precautions. The presence of a critical mass of Pu ia a container can result ia a fission chain reaction. Lethal amounts of gamma and neutron radiation are emitted, and a large amount of heat is produced. The assembly can simmer near critical or can make repeated critical excursions. The generation of heat results eventually ia an explosion which destroys the assembly. The quantity of Pu required for a critical mass depends on several factors the form and concentration of the Pu, the geometry of the system, the presence of moderators (water, hydrogen-rich compounds such as polyethylene, cadmium, etc), the proximity of neutron reflectors, the presence of nuclear poisons, and the potential iateraction with neighboring fissile systems (188). As Httle as 509 g of Pu(N02)4 solution at a concentration Pu of 33 g/L ia a spherical container, reflected by an infinite amount of water, is a critical mass (189,190). Evaluation of criticaUty controls is available (32,190). [Pg.205]

Polyolefins. Low concentrations of stabilizers (<0.01%) are added to polyethylene and polypropylene after synthesis and prior to isolation to retard oxidation of the polymers exposed to air. [Pg.228]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

Fig. 5. Effect of surfactant type on surface resistivity, (a) Concentration of surface-active compound in low density polyethylene (LDPE) requked to achieve 10 Q/sq surface resistivity and (b) effect on surface resistivity of an acrylic polymer. Concentration of surface-active compound is 0.3%. Fig. 5. Effect of surfactant type on surface resistivity, (a) Concentration of surface-active compound in low density polyethylene (LDPE) requked to achieve 10 Q/sq surface resistivity and (b) effect on surface resistivity of an acrylic polymer. Concentration of surface-active compound is 0.3%.
Most refinery/petrochemical processes produce ethylene that contains trace amounts of acetylene, which is difficult to remove even with cryogenic distillation. Frequently it is necessary to lower the acetylene concentration from several hundreds ppm to < 10 ppm in order to avoid poisoning catalysts used in subsequent ethylene consuming processes, such as polymeri2ation to polyethylene. This can be accompHshed with catalytic hydrogenation according to the equation. [Pg.199]

Blends of isobutylene polymers with thermoplastic resins are used for toughening these compounds. High density polyethylene and isotactic polypropylene are often modified with 5 to 30 wt % polyisobutylene. At higher elastomer concentration the blends of butyl-type polymers with polyolefins become more mbbery in nature, and these compositions are used as thermoplastic elastomers (98). In some cases, a halobutyl phase is cross-linked as it is dispersed in the polyolefin to produce a highly elastic compound that is processible in thermoplastic mol ding equipment (99) (see Elastomers, synthetic-thermoplastic). ... [Pg.487]

Water-soluble polymers and polyelectrolytes (e.g., polyethylene glycol, polyethylene imine polyacrylic acid) have been used success-hilly in protein precipitations, and there has been some success in affinity precipitations wherein appropriate ligands attached to polymers can couple with the target proteins to enhance their aggregation. Protein precipitation can also be achieved using pH adjustment, since proteins generally exhibit their lowest solubility at their isoelectric point. Temperature variations at constant salt concentration allow for frac tional precipitation of proteins. [Pg.2060]

The basis for the separation is that when two polymers, or a polymer and certain salts, are mixed together in water, they are incompatible, leading to the formation of two immiscible but predominantly aqueous phases, each rich in only one of the two components [Albertsson, op. cit. Kula, in Cooney and Humphrey (eds.), op. cit., pp. 451 71]. A phase diagram for a polyethylene glycol (PEG)-Dextran, two-phase system is shown in Fig. 22-85. Proteins are known to distribute unevenly between these phases. This uneven distribution can be used for the selective concentration and partial purification of the products. Partitioning between the two phases is controlled by the polymer molecular weight and concentration, protein net charge and... [Pg.2060]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]


See other pages where Polyethylene concentration is mentioned: [Pg.341]    [Pg.133]    [Pg.69]    [Pg.255]    [Pg.228]    [Pg.133]    [Pg.39]    [Pg.341]    [Pg.133]    [Pg.69]    [Pg.255]    [Pg.228]    [Pg.133]    [Pg.39]    [Pg.707]    [Pg.69]    [Pg.202]    [Pg.460]    [Pg.287]    [Pg.324]    [Pg.495]    [Pg.274]    [Pg.303]    [Pg.46]    [Pg.191]    [Pg.192]    [Pg.515]    [Pg.515]    [Pg.515]    [Pg.142]    [Pg.148]    [Pg.154]    [Pg.520]    [Pg.82]    [Pg.140]    [Pg.458]    [Pg.24]    [Pg.139]    [Pg.2030]   
See also in sourсe #XX -- [ Pg.79 , Pg.81 ]




SEARCH



Concentration aqueous polyethylene oxide)

Polyethylene 1-hexene concentration

Polyethylene higher ethylene concentration

© 2024 chempedia.info