Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters transesterification reactions

It was previously mentioned was that a large number of minor copolymers of PET have been developed over the past 50 years, with the intent of modifying textile fiber properties and processability [2, 3], Of broader interest is that some of these textile modifications, such as PET copolymers with metal salts of 5-sulfoisophthalic acid (SIPA), have their own rich chemistries when the extent of polymer modification is increased beyond textile levels. An example of such a modification is that changing the counterions associated with SIPA can significantly effect the kinetics of polyester transesterification reactions (the... [Pg.257]

PET is the polyester of terephthalic acid and ethylene glycol. Polyesters are prepared by either direct esterification or transesterification reactions. In the direct esterification process, terephthalic acid is reacted with ethylene glycol to produce PET and water as a by-product. Transesterification involves the reaction of dimethyl terephthalate (DMT) with ethylene glycol in the presence of a catalyst (usually a metal carboxylate) to form bis(hydroxyethyl)terephthalate (BHET) and methyl alcohol as a by-product. In the second step of transesterification, BHET... [Pg.527]

Organotin compounds such as monobutyltin oxide, the main substance used, accounting for 70% of consumption, dibutyltin oxide, monooctyltin oxide, and dioctyltin oxide are used in certain esterification and transesterification reactions, at concentrations between 0.001% and 0.5% by weight. They are used in the production of substances such as phthalates, polyesters, alkyd resins, fatty acid esters, and adipates and in trans-esterifications. These substances are in turn used as plasticizers, synthetic lubricants, and coatings. Organo-tins are used as catalysts to reduce the formation of unwanted by-products and also provide the required colour properties (ETICA, 2002). [Pg.11]

In analogy to the transesterification of diethyl terephthalate used in the preparation of commercially important polyester fibers such as Dacron (24), a transesterification reaction waus successfully employed for the preparation of poly(N-acylhydroxyproline esters) (Scheme 1). [Pg.202]

The first attempts at ROP have been mainly based on anionic and cationic processes [4,5]. In most cases, polyesters of low molecular weight were recovered and no control on the polymerization course was reported due to the occurrence of side intra- and intermolecular transesterification reactions responsible for a mixture of linear and cyclic molecules. In addition, aliphatic polyesters have been prepared by free radical, active hydrogen, zwitterionic, and coordination polymerization as summarized in Table 2. The mechanistic considerations of the above-mentioned processes are outside the scope of this work and have been extensively discussed in a recent review by some of us [2 ]. In addition, the enzyme-catalyzed ROP of (di)lactones in organic media has recently been reported however, even though this new polymerization procedure appears very promising, no real control of the polyesters chains, or rather oligomers, has been observed so far [6]. [Pg.5]

The second factor that additionally effects polycondensations are exchange reactions which can occur between free end groups and junction points in the chain, for example, between OH end groups and ester groups of a polyester (transesterification) ... [Pg.268]

The largest commercial use of ethylene glycol is its reaction with dicarboxylic acids to form linear polyesters. Polyethylene terephthalate) [25038-59-9] (PET) is produced by esterification of terephthalic acid [100-21 -0] (1) to form bishydroxyethyl terephthalate [959-26-2] (BHET) (2). BHET polymerizes in a transesterification reaction catalyzed by antimony oxide to form PET (3). [Pg.357]

Lipase-catalyzed polycondensation and transesterification reactions are the subjects of intensive research activities but polyesters of low molecular weight are obtained by this technique [45-52]. [Pg.6]

Polyethylene terephthalate) in short PET is a polyester. It is mainly used in the garment industry with or without natural cotton and has trade names such as Terylene , Dacron , etc. As the name indicates, it is a polymer between terephthalic acid (PT) and ethylene glycol. Both terephthalic acid and dimethyl terephthalate (DMT) can be used to make the polymer. A majority of the modem plants tend to use PT as the starting material because of the availability of high-purity PT on a large scale. Both PT and DMT are first converted to bis(hydroxy ethyl) terephthalate 8.17 (see reaction 8.26). For PT this is effected by a straightforward esterification reaction. For DMT a transesterification reaction catalyzed by zinc and manganese acetate is used. [Pg.182]

AO containing various phenolic moieties were prepared by transesterification in the presence of tetraalkyl titanates. Randomly distributed -active moieties are characteristic of 140 (only the hard polyester segment is given) prepared from dimethyl terephthalate, 1,4-butanediol, poly(tetramethylene oxide)diol and dimethyl 5-(3,5-di-tm-butyl-4-hydroxybenzenepropaneamido)isophthalate [181]. The mentioned polymeric AO was used for stabilization of polyether-polyester elastomers. A partial attachement of tetrakis[methylene 3(3,5-di-tert-butyl-4-hydroxy-phenyl)propionate]methane (3) via transesterification reaction was expected in the synthesis of another polyether-polyester elastomer by [182]. A reversible redox polyester was formed from 2,5-bis(2-hydroxyethyl)hydroquinone and dichlorides of aliphatic dicarboxylic acids [137],... [Pg.107]

In commercial practice, all PET is made using an antimony compound for the final polycondensation stage. The transesterification reaction between DMT and the glycol is catalysed by salts of manganese, zinc, calcium, cobalt, or other metals. At the end of the ester-interchange stage, when essentially all of the methanol has been evolved, the transesterification catalyst is converted to a catalytically inactive and substantially colourless form by reaction with a phosphorus compound such as triphenyl phosphate or phosphite. Polyesters of 1,4-cyclo-hexanedimethanol and DMT or TA are made using complex titanium catalysts. [Pg.511]

Polymer blends based on a polyester and a polycarbonate have been shown to be immiscible provided no transesterification reaction occurs (Porter Wang, 1992). Heat treatment of the same blends yielded different degrees of compatibility depending on the temperature and duration of the treatment, as well as on the presence and type of catalyst. This method has been successfully used to increase the compatibility of different polymers with poly(bisphenol-A-carbonate) (PC). [Pg.138]

Polybutylene therephthalate (PBT) has been used as a blend component to provide chemical resistance in various systems, but the most interesting one results from a combination with polycarbonate and, eventually, an Impact modifier of the coreshell type. Polyester blends containing polycarbonate exhibit ester interchange chemical reactions, which add to the complexity of property control of these materials. DEVAUX and co-workers (14) have examined the transesterification reaction catalysed by residual catalysts in PBT which can lead to the formation of block and random copolymers. They have shown that allyl or aryl phosphites inactivate the residual titanium catalyst and minimise the transesterification reaction. HOBBS et al. (15) reported a way of controlling miscibility behaviour, morphology and deformation mechanisms, in order to obtain blends compati-bilisation and excellent mechanical properties. [Pg.71]

Ester-exchange reactions in polyesters (and analogous amide reactions in nylons) that result in a new block copolymer. An example is the formation of a blend between polycarbonate and poly(butylene terephthalate) in which the compatibilizer is formed by a transesterification reaction at elevated temperatures (350 °C), but, when processed at lower temperatures, the systems are not compatible. [Pg.124]

The direct polyesterification reaction of diacids with glycols is the most important industrial synthetic route to polyester polyols. The second most important synthetic route is the transesterification reaction between dimethyl esters of dicarboxylic or dibasic acids (dimethyl adipate, dimethyl terephthalate, dimethyl carbonate or even polyethylene terephthalate) and glycols (reaction 8.2) [1, 3-8]. [Pg.264]

Aliphatic polycarbonates (polyesters of carbonic acid) are obtained by the transesterification reaction of dialkyl carbonates (for example dimethyl carbonate) with aliphatic diols. A typical example is the polycondensation of dimethyl carbonate with 1,6 hexanediol (reaction 8.3) [4-8] ... [Pg.265]

The bottom residues from DMT fabrication are benzyl and methyl esters of dicarboxylic and tricarboxylic acids with biphenyl or triphenyl structures together with DMT [4, 6. By the transesterification reactions of these complex ester residues with diethyleneglycol (DEG), aromatic polyester polyols with a functionality in the range 22-23 OH groups/mol are obtained. [Pg.421]

PET wastes, proved to be an excellent raw material for low cost aromatic polyester polyols. By transesterification with DEG and (or) propylene glycol or dipropyleneglycol (DPG), liquid, low viscosity and low functionality aromatic polyester polyols were obtained. Due to the low cost, DEG is the preferred glycol for transesterification (reaction 16.3) [4, 6-8, 12]. [Pg.422]

A transesterification reaction is used to make the polyester fibres that are used for textile production. Terylene, or Dacron, for example, is a polyester of the... [Pg.291]

Inspection of Table 2, entries 1-4, shows that optimum conversion and polyester molecular weight from 1 were at 70 °C. HiC activity dropped precipitously for polymerizations conducted at 80 °C. These results agree with those described above for condensation polymerizations. By performing poly-(e-caprolactone) in toluene instead of in bulk at 70 "C, Mi increased from 16 000 to 24 900 and Afw/Mi decreased from 3.1 to 1.7. An increase in Mi is expected for solution polymerizations since the solvent decreases the viscosity of the reaction medium, thereby easing diffusion constraints between substrates and the enzyme. However, the decrease in polydispersity for the solution polymerizations is less easily explained. One possibility is that transesterification reactions leading to broader polydispersity occur more rapidly for reactions conducted in bulk. HiC catalysis of a>-pentadecalactone (2) polymerization in... [Pg.266]

Lipases are being used in several reactions of synthesis for the production of valuable compounds. Biodegradable polymers, like butyl oleate and some polyesters, have been synthesized by esterification and transesterification reactions with lipases... [Pg.306]


See other pages where Polyesters transesterification reactions is mentioned: [Pg.278]    [Pg.52]    [Pg.693]    [Pg.137]    [Pg.145]    [Pg.180]    [Pg.181]    [Pg.183]    [Pg.186]    [Pg.142]    [Pg.221]    [Pg.278]    [Pg.1335]    [Pg.17]    [Pg.321]    [Pg.360]    [Pg.360]    [Pg.667]    [Pg.255]    [Pg.371]    [Pg.296]    [Pg.166]    [Pg.360]    [Pg.503]    [Pg.10]    [Pg.280]    [Pg.52]    [Pg.693]   
See also in sourсe #XX -- [ Pg.1007 ]




SEARCH



Reactions transesterification

Transesterifications

© 2024 chempedia.info