Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,2-Polybutadienes mechanism

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Polymer-based rocket propellants are generally referred to as composite propellants, and often identified by the elastomer used, eg, urethane propellants or carboxy- (CTPB) or hydroxy- (HTPB) terrninated polybutadiene propellants. The cross-linked polymers act as a viscoelastic matrix to provide mechanical strength, and as a fuel to react with the oxidizers present. Ammonium perchlorate and ammonium nitrate are the most common oxidizers used nitramines such as HMX or RDX may be added to react with the fuels and increase the impulse produced. Many other substances may be added including metallic fuels, plasticizers, stabilizers, catalysts, ballistic modifiers, and bonding agents. Typical components are Hsted in Table 1. [Pg.32]

Acrylonitrile—Butadiene—Styrene. ABS is an important commercial polymer, with numerous apphcations. In the late 1950s, ABS was produced by emulsion grafting of styrene-acrylonitrile copolymers onto polybutadiene latex particles. This method continues to be the basis for a considerable volume of ABS manufacture. More recently, ABS has also been produced by continuous mass and mass-suspension processes (237). The various products may be mechanically blended for optimizing properties and cost. Brittle SAN, toughened by SAN-grafted ethylene—propylene and acrylate mbbets, is used in outdoor apphcations. Flame retardancy of ABS is improved by chlorinated PE and other flame-retarding additives (237). [Pg.419]

Degradation of polyolefins such as polyethylene, polypropylene, polybutylene, and polybutadiene promoted by metals and other oxidants occurs via an oxidation and a photo-oxidative mechanism, the two being difficult to separate in environmental degradation. The general mechanism common to all these reactions is that shown in equation 9. The reactant radical may be produced by any suitable mechanism from the interaction of air or oxygen with polyolefins (42) to form peroxides, which are subsequentiy decomposed by ultraviolet radiation. These reaction intermediates abstract more hydrogen atoms from the polymer backbone, which is ultimately converted into a polymer with ketone functionahties and degraded by the Norrish mechanisms (eq. [Pg.476]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Polymerization Reactions. The polymerization of butadiene with itself and with other monomers represents its largest commercial use. The commercially most important polymers are styrene—butadiene mbber (SBR), polybutadiene (BR), styrene—butadiene latex (SBL), acrylonittile—butadiene—styrene polymer (ABS), and nittile mbber (NR). The reaction mechanisms are free-radical, anionic, cationic, or coordinate, depending on the nature of the initiators or catalysts (194—196). [Pg.345]

Syndiotactic polybutadiene was fkst made by Natta in 1955 (28) with a melting point of 154°C. Syndiotactic polybutadiene [31567-90-5] can be prepared with various melting points depending on its vinyl content and degree of crystallinity. The physical, mechanical, and rheological properties of the polymer are gready affected by these parameters. [Pg.530]

In the mid-1970s there was a short period during which styrene was in very short supply. This led to the development of what were known as high-vinyl polybutadienes which contained pendent vinyl groups as a result of 1,2-polymer-isation mechanisms. These rubbers had properties similar to those of SBR and could replace the latter should it become economically desirable. [Pg.291]

The study of acid-base interaction is an important branch of interfacial science. These interactions are widely exploited in several practical applications such as adhesion and adsorption processes. Most of the current studies in this area are based on calorimetric studies or wetting measurements or peel test measurements. While these studies have been instrumental in the understanding of these interfacial interactions, to a certain extent the interpretation of the results of these studies has been largely empirical. The recent advances in the theory and experiments of contact mechanics could be potentially employed to better understand and measure the molecular level acid-base interactions. One of the following two experimental procedures could be utilized (1) Polymers with different levels of acidic and basic chemical constitution can be coated on to elastomeric caps, as described in Section 4.2.1, and the adhesion between these layers can be measured using the JKR technique and Eqs. 11 or 30 as appropriate. For example, poly(p-amino styrene) and poly(p-hydroxy carbonyl styrene) can be coated on to PDMS-ox, and be used as acidic and basic surfaces, respectively, to study the acid-base interactions. (2) Another approach is to graft acidic or basic macromers onto a weakly crosslinked polyisoprene or polybutadiene elastomeric networks, and use these elastomeric networks in the JKR studies as described in Section 4.2.1. [Pg.134]

Fitzpatrick et al. [41] used small-spot XPS to determine the failure mechanism of adhesively bonded, phosphated hot-dipped galvanized steel (HDGS) upon exposure to a humid environment. Substrates were prepared by applying a phosphate conversion coating and then a chromate rinse to HDGS. Lap joints were prepared from substrates having dimensions of 110 x 20 x 1.2 mm using a polybutadiene (PBD) adhesive with a bond line thickness of 250 p,m. The Joints were exposed to 95% RH at 35 C for 12 months and then pulled to failure. [Pg.284]

When the physical modification method is used, PS is modified by mechanical stirring with various synthetic rubbers such as polybutadiene, polybutadiene styrene, polyisopropene, polychloropropene, polybutadiene styrene-acrylonitrile copolymers. In the chemical modification, PS is modified with polyfunctional modificators in the presence of cationic catalysis. [Pg.259]

Fig. 31.—A plot of the log of the trans/cis ratio for polybutadiene against the reciprocal of the absolute temperature of polymerization by a free radical mechanism. (Results of Richardson and Sacher obtained by infrared analysis.)... Fig. 31.—A plot of the log of the trans/cis ratio for polybutadiene against the reciprocal of the absolute temperature of polymerization by a free radical mechanism. (Results of Richardson and Sacher obtained by infrared analysis.)...
EPM > CO > TP > CB. The highly crystalline TB had an etch rate about six times that of CB, ascribable to a morphology difference, while the partially crystalline TO had an etch rate somewhat higher than that of amorphous CO. Cis/trans content had little or no effect on the etch rate of the polyalkenamers. A mechanism involving crosslinking through vinyl units is proposed to explain the unexpected protection imparted to vinylene-rich polybutadienes by the presence of 1,2 double bonds. [Pg.342]


See other pages where 1,2-Polybutadienes mechanism is mentioned: [Pg.2524]    [Pg.203]    [Pg.20]    [Pg.330]    [Pg.149]    [Pg.151]    [Pg.317]    [Pg.507]    [Pg.530]    [Pg.531]    [Pg.532]    [Pg.7]    [Pg.128]    [Pg.327]    [Pg.371]    [Pg.500]    [Pg.184]    [Pg.441]    [Pg.352]    [Pg.170]    [Pg.515]    [Pg.444]    [Pg.937]    [Pg.946]    [Pg.947]    [Pg.947]    [Pg.212]    [Pg.456]    [Pg.134]    [Pg.141]    [Pg.567]    [Pg.862]    [Pg.881]    [Pg.245]    [Pg.343]    [Pg.351]    [Pg.354]   
See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Polybutadiene dynamic mechanical

Polybutadiene mechanical properties

© 2024 chempedia.info