Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polybutadiene copolymer with isoprene

Orientations in elongated mbbers are sometimes regular to the extent that there is local crystallization of individual chain segments (e.g., in natural rubber). X-ray diffraction patterns of such samples are very similar to those obtained from stretched fibers. The following synthetic polymers are of technical relevance as mbbers poly(acrylic ester)s, polybutadienes, polyisoprenes, polychloroprenes, butadiene/styrene copolymers, styrene/butadiene/styrene tri-block-copolymers (also hydrogenated), butadiene/acrylonitrile copolymers (also hydrogenated), ethylene/propylene co- and terpolymers (with non-conjugated dienes (e.g., ethylidene norbomene)), ethylene/vinyl acetate copolymers, ethyl-ene/methacrylic acid copolymers (ionomers), polyisobutylene (and copolymers with isoprene), chlorinated polyethylenes, chlorosulfonated polyethylenes, polyurethanes, silicones, poly(fluoro alkylene)s, poly(alkylene sulfide)s. [Pg.22]

Figure 4. BR + IR is a 50/50 (wt) blend of synthetic cis-1,4-polyisoprene and cis-1,4-polybutadiene. Bl copolymers are random cis-1,4-butadiene-isoprene copolymers with the same composition. Results obtained with Rheovibron on gum vulcanizates at 110 Hz frequency. Figure 4. BR + IR is a 50/50 (wt) blend of synthetic cis-1,4-polyisoprene and cis-1,4-polybutadiene. Bl copolymers are random cis-1,4-butadiene-isoprene copolymers with the same composition. Results obtained with Rheovibron on gum vulcanizates at 110 Hz frequency.
The discovery of the ability of lithium-based catalysts to polymerize isoprene to give a high cis 1,4 polyisoprene was rapidly followed by the development of alkyllithium-based polybutadiene. The first commercial plant was built by the Firestone Tire and Rubber Company in 1960. Within a few years the technology was expanded to butadiene-styrene copolymers, with commercial production under way toward the end of the 1960s. [Pg.702]

Successive addition of 1,3-butadiene and isocyanide to the solution of the Ni catalyst forms a product with flexible polybutadiene blocks and rigid polyisocyanide blocks. Although the reaction of butadiene and isoprene in the presence of CoCl2/MAO causes homopolymerization of butadiene, the reaction catalyzed by CoCl2/MAO/PPh3 affords a copolymer with 1,2-butadiene and 3,4-isoprene units [94]. The monomer reactivity ratios indicate higher reactivity of butadiene than isoprene. [Pg.158]

It is claimed that styrene/butadiene diblock polymers bring about an improvement in the hardness, strength, and processability of polybutadiene elastomers (27), as well as an improvement in the ozone resistance of neoprene rubber (28). Styrene diblock polymers have also been made with isoprene, a-methyIstyrene, methyl methacrylate, vinylpyridine, and a-olefins. Block copolymers of ethylene, propylene, and other a-olefins with each other have been made as well. Heteroatom block copolymers based on styrene or other hydrocarbons and alkylene oxides, phenylene oxides, lactones, amides, imides, sulfides, or slloxanes have been prepared. [Pg.225]

Polybutadiene formed by high-temperature, free-radical addition polymerization is a copolymer of these three kinds of structural units. With isoprene (2-methyIbutadlene), the number of ways the unit can enter the polymer chain is still larger for example, the... [Pg.243]

The most extensively studied block copolymers prepared by anionic polymerization are the styrene-butadiene or styrene-isoprene rubbers. Shell Chemical Company s Kraton thermoplastic elastomers are ABA block copolymers of this type. Their elastomeric properties are excellent, yet they differ from other rubbers in that vulcanization is not required. These elastomers consist of a rubbery polybutadiene matrix with the styrene segments serving as anchors in thermoplastic microdomains. [Pg.88]

On the other hand, a living (33) or pseudo living (25) nature of Ln-catalyzed polymerization was proposed to account for the proportional increase of molecular weight with conversion and proved by the formation of block copolymers when the reacting butadiene was substituted with isoprene. Moreover, a Nd-polybutadiene quenched with CO was found to contain functional end groups, even if their amount was not measured (31). The presence of Ln-CH -CH -Ln species, in analogy with Li chemistry, was also indicated in the reaction of 4f metals (Y, Sm) with ethylene (3). [Pg.396]

The mechanochemical blends differ from the solution graft copolymers in that the shear rate in the latter is much lower. However, in the solution graft copolymers, polymer 1 is usually a polydiene such as polybutadiene or poly-isoprene, which grafts in connection with the remaining double bonds. The HIPS structure illustrated in Figure 4.14 shows a typical morphology of a solution graft copolymer. [Pg.690]

Spin-labelled rubbers (polybutadiene, polyisoprene, copolymer of isobutylene with isoprene) were prepared by reactions with 2,6-dichloronitrosobenzene in toluene... [Pg.44]

It was anticipated that the copolymerization of substituted 1,1-dipheny-lethylenes with dienes such as butadiene and isoprene would be complicated by the very unfavorable monomer reactivity ratio for the addition of poly(-dienyl)lithium compounds to 1,1-diphenylethylene [133, 134]. Yuki and Oka-moto [133, 134] calculated values of ri=54 and ri=29 in hydrocarbon solutions for the copolymerization of 1,1-diphenylethylene (M2) with butadiene (Mi) and isoprene (Mi), respectively. Although the corresponding values in THE are ri(butadiene)=0.13 and ri(isoprene)=0.12, this would not be an acceptable solution since THE is known to form polymers with high 1,2-microstructures [3]. Anionic copolymerizations of butadiene (Mi) with excess l-(4-dimethyla-mino-phenyl)-l-phenylethylene (M2) were conducted in benzene at room temperature for 24-48 h using scc-butyllithium as initiator [189]. Anisole, triethy-lamine and ferf-butyl methyl ether were added in ratios of [B]/[RLi]=60, 20, 30, respectively, to promote copolymerization and minimize 1,2-enchainment in the polybutadiene units. Narrow molecular weight distribution copolymers with Mn=14xl0 to 32x10 (Mw/Mn=1.02-1.03) and 8, 12, and 30 amine... [Pg.122]

Curatives are introduced into compounds to crosslink polymer chains. The most important curative is sulfur which produces (polymer)-S -(polymer) crosslinks. This primarily involves unsaturated elastomers based on isoprene and butadiene such as natural rubber, polybutadiene, and its copolymers with styrene and acrylonitrile (see Section 1.3). After crosslinking, the polymer networks show increased retractive force and reduced creep. The cured rubber becomes insoluble and it cannot be processed in the molten state. The concentration of curatives and their reactivity affect the degree of crosshnking. [Pg.147]

Nonpolar hydrocarbon monomers such as styrene, isoprene, and butadiene are polymerized in hydrocarbon solvents such as benzene or cyclohexane. Initiation is achieved with the use of alkyllithiums such as sec-butyllithium and molecular mass is controlled by the ratio of initiator to monomer. The living nature of anionic polymerization allows the syntheses of block copolymers by sequential addition of the monomers. After one monomer is exhausted, the chain remains reactive, or living. The addition of the second monomer then continues the polymerization to form a block copolymer. Such techniques are used to synthesize polystyrene-polyisoprene or polystyrene-polybutadiene copolymers (PS-PI or PS-PB, respectively). [Pg.298]

The low temperature ene reactions of 4-substituted-l,2,4-triazoline-3,5-diones (RTD) were used to modify polydiene surfaces. Hydrophilic surfaces (contact angles with water of 30-50°) were obtained on polybutadiene, poly-isoprene and styrene-butadiene copolymers by first treating the polymer at room temperature with RTD (R=Ph,... [Pg.219]

Triblock copolymers, as shown in Fig. 5.8 d), comprise a central homopolymer block of one type, the ends of which are attached to homopolymer chains of another type. As with other block copolymers, the components of triblocks may be compatible or incompatible, which will strongly influence their properties. Of particular interest are triblocks with incompatible sequences, the middle block of which is rubbery, and the end blocks of which are glassy and form the minor phase. When such polymers phase-segregate, it is possible for the end blocks of a single molecule to be incorporated into separate domains. Thus, a number of rubbery mid-block chains connect the glassy phases to one another. These materials display rubber-like properties, with the glassy domains acting as physical crosslinks. Examples of such materials are polystyrene/isoprene/polystyrene and polystyrene/polybutadiene/polystyrene triblock copolymers. [Pg.109]

Butadiene and isoprene have two double bonds, and they polymerize to polymers with one double bond per monomeric unit. Hence, these polymers have a high degree of unsaturation. Natural rubber is a linear cis-polyisoprene from 1,4-addition. The corresponding trans structure is that of gutta-percha. Synthetic polybutadienes and polyisoprenes and their copolymers usually contain numerous short-chain side branches, resulting from 1,2-additions during the polymerization. Polymers and copolymers of butadiene and isoprene as well as copolymers of butadiene with styrene (GR-S or Buna-S) and copolymers of butadiene with acrylonitrile (GR-N, Buna-N or Perbunan) have been found to cross-link under irradiation. [Pg.346]

Diene polymers refer to polymers synthesized from monomers that contain two carbon-carbon double bonds (i.e., diene monomers). Butadiene and isoprene are typical diene monomers (see Scheme 19.1). Butadiene monomers can link to each other in three ways to produce ds-1,4-polybutadiene, trans-l,4-polybutadi-ene and 1,2-polybutadiene, while isoprene monomers can link to each other in four ways. These dienes are the fundamental monomers which are used to synthesize most synthetic rubbers. Typical diene polymers include polyisoprene, polybutadiene and polychloroprene. Diene-based polymers usually refer to diene polymers as well as to those copolymers of which at least one monomer is a diene. They include various copolymers of diene monomers with other monomers, such as poly(butadiene-styrene) and nitrile butadiene rubbers. Except for natural polyisoprene, which is derived from the sap of the rubber tree, Hevea brasiliensis, all other diene-based polymers are prepared synthetically by polymerization methods. [Pg.547]

Styrene-1,3-butadiene-styrene (SBS) or styrene-isoprene-styrene (SIS) triblock copolymers are manufactured by a three-stage sequential polymerization. One possible way of the synthesis is to start with the polymerization of styrene. Since all polystyrene chains have an active anionic chain end, adding butadiene to this reaction mixture resumes polymerization, leading to the formation of a polybutadiene block. The third block is formed after the addition of styrene again. The polymer thus produced contains glassy (or crystalline) polystyrene domains dispersed in a matrix of rubbery polybutadiene.120,481,486... [Pg.775]

Indicate cycloolefin monomers that will be polymerised by metathesis catalysts to polymers with a structure equivalent to polybutadiene, an alternating ethylene/ butadiene copolymer, an alternating butadiene / isoprene copolymer and polyacetylene. [Pg.378]

Three diblock copolymers of cis-1,4 polyisoprene (IR) and 1,4-polybutadiene (BR) have been studied in dynamic mechanical experiments, transmission electron microscopy, and thermomechanical analysis. The block copolymers had molar ratios of 1/2, 1/1, and 2/1 for the isoprene and butadiene blocks. Homopolymers of polybutadiene and polyisoprene with various diene microstructures also were examined using similar experimental methods. Results indicate that in all three copolymers, the polybutadiene and polyisoprene blocks are essentially compatible whereas blends of homopolymers of similar molecular weights and microstructures were incompatible. [Pg.237]


See other pages where Polybutadiene copolymer with isoprene is mentioned: [Pg.23]    [Pg.163]    [Pg.776]    [Pg.30]    [Pg.35]    [Pg.46]    [Pg.207]    [Pg.238]    [Pg.375]    [Pg.168]    [Pg.90]    [Pg.64]    [Pg.6]    [Pg.361]    [Pg.328]    [Pg.168]    [Pg.170]    [Pg.397]    [Pg.346]    [Pg.91]    [Pg.296]    [Pg.533]    [Pg.134]    [Pg.48]    [Pg.101]    [Pg.93]    [Pg.196]    [Pg.551]    [Pg.406]    [Pg.243]   
See also in sourсe #XX -- [ Pg.241 ]




SEARCH



ISOPRENE COPOLYMER

Isoprene, copolymers with

© 2024 chempedia.info