Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyatomic molecules electronic

For polyatomic molecules, electronic transitions involve molecular orbitals such transitions require energy in the ultraviolet region and are of vital importance in ultraviolet spectroscopy. [Pg.144]

Electrons, protons and neutrons and all other particles that have s = are known as fennions. Other particles are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-mechanical properties of fennions and bosons, which have important implications in fields ranging from statistical mechanics to spectroscopic selection mles. It can be shown that the spin quantum number S associated with an even number of fennions must be integral, while that for an odd number of them must be half-integral. The resulting composite particles behave collectively like bosons and fennions, respectively, so the wavefunction synnnetry properties associated with bosons can be relevant in chemical physics. One prominent example is the treatment of nuclei, which are typically considered as composite particles rather than interacting protons and neutrons. Nuclei with even atomic number tlierefore behave like individual bosons and those with odd atomic number as fennions, a distinction that plays an important role in rotational spectroscopy of polyatomic molecules. [Pg.30]

Herzberg G 1966 Molecular Spectra and Molecular Structure III Electronic Spectra and Electronic Structure of Polyatomic Molecules (New York Van Nostrand-Reinhold)... [Pg.82]

The above three sources are a classic and comprehensive treatment of rotation, vibration, and electronic spectra of diatomic and polyatomic molecules. [Pg.85]

In this chapter we shall first outline the basic concepts of the various mechanisms for energy redistribution, followed by a very brief overview of collisional intennoleciilar energy transfer in chemical reaction systems. The main part of this chapter deals with true intramolecular energy transfer in polyatomic molecules, which is a topic of particular current importance. Stress is placed on basic ideas and concepts. It is not the aim of this chapter to review in detail the vast literature on this topic we refer to some of the key reviews and books [U, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32] and the literature cited therein. These cover a variety of aspects of tire topic and fiirther, more detailed references will be given tliroiighoiit this review. We should mention here the energy transfer processes, which are of fiindamental importance but are beyond the scope of this review, such as electronic energy transfer by mechanisms of the Forster type [33, 34] and related processes. [Pg.1046]

Weitz E and Flynn G W 1981 Vibrational energy flow in the ground electronic states of polyatomic molecules Adv. Chem. Rhys. 47 185-235... [Pg.1084]

If one of the components of this electronic transition moment is non-zero, the electronic transition is said to be allowed if all components are zero it is said to be forbidden. In the case of diatomic molecules, if the transition is forbidden it is usually not observed unless as a very weak band occurring by magnetic dipole or electric quadnipole interactions. In polyatomic molecules forbidden electronic transitions are still often observed, but they are usually weak in comparison with allowed transitions. [Pg.1137]

Most stable polyatomic molecules whose absorption intensities are easily studied have filled-shell, totally synuuetric, singlet ground states. For absorption spectra starting from the ground state the electronic selection rules become simple transitions are allowed to excited singlet states having synuuetries the same as one of the coordinate axes, v, y or z. Other transitions should be relatively weak. [Pg.1137]

The selection rule for vibronic states is then straightforward. It is obtained by exactly the same procedure as described above for the electronic selection rules. In particular, the lowest vibrational level of the ground electronic state of most stable polyatomic molecules will be totally synnnetric. Transitions originating in that vibronic level must go to an excited state vibronic level whose synnnetry is the same as one of the coordinates, v, y, or z. [Pg.1138]

Duschinsky F 1937 On the interpretation of electronic spectra of polyatomic molecules. I. Concerning the Franck-Condon Principle Acta Physicochimica URSS 7 551... [Pg.1148]

These electronic energies dependence on the positions of the atomic centres cause them to be referred to as electronic energy surfaces such as that depicted below in figure B3.T1 for a diatomic molecule. For nonlinear polyatomic molecules having atoms, the energy surfaces depend on 3N - 6 internal coordinates and thus can be very difficult to visualize. In figure B3.T2, a slice tln-oiigh such a surface is shown as a fimction of two of the 3N - 6 internal coordinates. [Pg.2154]

For both types of orbitals, the coordinates r, 0 and cji refer to the position of the electron relative to a set of axes attached to the centre on which the basis orbital is located. Although STOs have the proper cusp behaviour near the nuclei, they are used primarily for atomic- and linear-molecule calculations because the multi-centre integrals which arise in polyatomic-molecule calculations caimot efficiently be perfonned when STOs are employed. In contrast, such integrals can routinely be done when GTOs are used. This fiindamental advantage of GTOs has led to the dominance of these fimetions in molecular quantum chemistry. [Pg.2170]

Sensitivity levels more typical of kinetic studies are of the order of lO molecules cm . A schematic diagram of an apparatus for kinetic LIF measurements is shown in figure C3.I.8. A limitation of this approach is that only relative concentrations are easily measured, in contrast to absorjDtion measurements, which yield absolute concentrations. Another important limitation is that not all molecules have measurable fluorescence, as radiationless transitions can be the dominant decay route for electronic excitation in polyatomic molecules. However, the latter situation can also be an advantage in complex molecules, such as proteins, where a lack of background fluorescence allow s the selective introduction of fluorescent chromophores as probes for kinetic studies. (Tryptophan is the only strongly fluorescent amino acid naturally present in proteins, for instance.)... [Pg.2958]

Conical intersections, introduced over 60 years ago as possible efficient funnels connecting different elecbonically excited states [1], are now generally believed to be involved in many photochemical reactions. Direct laboratory observation of these subsurfaces on the potential surfaces of polyatomic molecules is difficult, since they are not stationary points . The system is expected to pass through them veiy rapidly, as the transition from one electronic state to another at the conical intersection is very rapid. Their presence is sunnised from the following data [2-5] ... [Pg.328]

G. Herzberg, Moleculer Spectra and Molecular Structure III. Electronic Spectra of Polyatomic Molecules, Van Nostrand, New York, 1967. [Pg.545]

This Schrodinger equation relates to the rotation of diatomic and linear polyatomic molecules. It also arises when treating the angular motions of electrons in any spherically symmetric potential... [Pg.33]

Another example of reduced symmetry is provided by the changes that occur as H2O fragments into OH and H. The a bonding orbitals (ai and b2) and in-plane lone pair (ai) and the a antibonding (ai and b2) of H2O become a orbitals (see the Figure below) the out-of-plane bi lone pair orbital becomes a" (in Appendix IV of Electronic Spectra and Electronic Structure of Polyatomic Molecules, G. Herzberg, Van Nostrand Reinhold Co., New York, N.Y. (1966) tables are given which allow one to determine how particular... [Pg.185]

Just as for an atom, the hamiltonian H for a diatomic or polyatomic molecule is the sum of the kinetic energy T, or its quantum mechanical equivalent, and the potential energy V, as in Equation (1.20). In a molecule the kinetic energy T consists of contributions and from the motions of the electrons and nuclei, respectively. The potential energy comprises two terms, and F , due to coulombic repulsions between the electrons and between the nuclei, respectively, and a third term Fg , due to attractive forces between the electrons and nuclei, giving... [Pg.19]

The molecular orbital (MO) approach to the electronic structure of diatomic, and also polyatomic, molecules is not the only one which is used but it lends itself to a fairly qualitative description, which we require here. [Pg.225]

The +, —, e, and/labels attached to the levels in Figure 7.25 have the same meaning as those in Figure 6.24 showing rotational levels associated with and Ig vibrational levels of a linear polyatomic molecule. Flowever, just as in that case, they can be ignored for a Z — I, type of electronic transition. [Pg.255]

Polyatomic molecules cover such a wide range of different types that it is not possible here to discuss the MOs and electron configurations of more than a very few. The molecules that we shall discuss are those of the general type AFI2, where A is a first-row element, formaldehyde (FI2CO), benzene and some regular octahedral transition metal complexes. [Pg.260]


See other pages where Polyatomic molecules electronic is mentioned: [Pg.661]    [Pg.485]    [Pg.440]    [Pg.661]    [Pg.485]    [Pg.440]    [Pg.1137]    [Pg.3035]    [Pg.329]    [Pg.335]    [Pg.386]    [Pg.501]    [Pg.149]    [Pg.596]    [Pg.113]    [Pg.256]    [Pg.260]    [Pg.261]    [Pg.261]    [Pg.263]    [Pg.264]    [Pg.265]    [Pg.267]    [Pg.269]    [Pg.271]    [Pg.273]   
See also in sourсe #XX -- [ Pg.978 ]




SEARCH



Molecule electronic

© 2024 chempedia.info