Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyamides thermotropism

Similady, hquid-crystal polymers exhibit considerable order in the hquid state, either in solution (lyotropic) or melt (thermotropic). When crystallized from solution or melt, they have a high degree of extended-chain crystallinity, and thus have superior mechanical properties. Kevlar (Du Pont) is an aromatic polyamide (atamid) with the repeating unit designated as (2). It is spun into... [Pg.433]

Unusual properties of fully aromatic polyesters are observed if they have at least partially a rigid planar chain structure. In particular, they can form thermotropic liquid crystalline states (see Example 4-5). As already discussed in Sect. 1.2.4 an important structural prerequisit for LCPs of Type A in order to attain the liquid crystalline state of aromatic polyesters (and aromatic polyamides, see Example 4-14), is a rigid main chain according to the following construction principle ... [Pg.270]

Working with a solution is needed for polymers which above their melting point would degrade (example aromatic polyamide fibres such as Kevlar and Twaron). For fibres the removal of the solvent is not too problematic. In e.g. injection moulding applications solvents caimot be used here thermotropic LCP s have to be used. Since these would degrade during processing, they are diluted by copolymerisation (example poly-hydroxy-benzoic acid - co - PETP)... [Pg.22]

Both lyotropic and thermotropic liquid-crystalline synthetic polymers have been widely studied. Aromatic polyamides constitute the most important class forming liquid-crystalline solutions the solvents are either powerfully protonating acids such as 100% sulphuric acid, chloro-, fluoro- or methane-sulphonic acid, and anhydrous hydrogen fluoride, or aprotic dipolar solvents such as dimethyl acetamide containing a small percentage, usually 2-5 %, of a salt such as lithium chloride or calcium chloride. Such solutions constitute a nematic phase within certain limits. Some criteria for formation of a nematic instead of an isotropic phase are ... [Pg.66]

Among melt-spun fibers, those based on thermotropic liquid-crystalline melts have the highest strength and rigidity reported to date, and appear comparable to polyamides spun from lyotropic liquids-crystalline solutions. This was a very active field of research in the 1970s and later, and many comonomers have been reported. Obviously, these compositions must contain three components at a minimum, but many have four or five com-... [Pg.466]

It was, however, observed that such systems under appropriate conditions of concentration, solvent, molecular weight, temperature, etc. form a liquid crystalline solution. Perhaps a little digression is in order here to say a few words about liquid crystals. A liquid crystal has a structure intermediate between a three-dimensionally ordered crystal and a disordered isotropic liquid. There are two main classes of liquid crystals lyotropic and thermotropic. Lyotropic liquid crystals are obtained from low viscosity polymer solutions in a critical concentration range while thermotropic liquid crystals are obtained from polymer melts where a low viscosity phase forms over a certain temperature range. Aromatic polyamides and aramid type fibers are lyotropic liquid crystal polymers. These polymers have a melting point that is high and close to their decomposition temperature. One must therefore spin these from a solution in an appropriate solvent such as sulfuric acid. Aromatic polyesters, on the other hand, are thermotropic liquid crystal polymers. These can be injection molded, extruded or melt spun. [Pg.81]

A multistep reaction pathway leads to polymers 43 and 44 with phosphatidylcholine moieties in the main chain and long alkyl groups in the side chain [122]. These polymers exhibit thermotropic liquid-crystalline behavior. Polyamides 45 were obtained by interfacial polycondensation they are insoluble in any normal solvent [123]. Poly-MPC capped with cholesteryl moieties at one or both polymer ends was prepared by the radical polymerization of MFC initiated with 4,4 -azobis[(3-cholesteryl)-4-cyanopentanoate] in the presence of a chain transfer agent [124]. The self-organization of these polymers was analyzed with fluorescence and NMR measurements. [Pg.174]

The range of polymers which were found to be able to form liquid crystalhne systems has been considerably extended. Poly(Y-benzyl-L-glutamate) and its analogs, as well as para-aromatic polyamides, exhibit this property in solutions, which served the basis for relating them to lyotropic liquid crystals (see Sect. 2.1). Subsequently, the classes of polymers were found which exhibited such a transition during a change of temperature thermotropic liquid crystals). [Pg.76]

Thermotropic main-chain LC polymers are copolymers or terpoly-mers, generally polyesters and polyamides. Homopolymers have such high melting temperatures that they decompose before melting. There are several ways to lower their melting temperatures and be able to use them as thermotropics. [Pg.56]

Recent developments in the substitution of completely aromatic LC polyesters have produced polymers which show improved solubilities and reduced transition temperatures (29). The presence of these side groups provides a method for producing polymers that are compatible with other similarly modified polymers. In this way, blends of rigid and flexible polymers can be prepared. Substituents have included alkyl, alkoxy (30) and phenyl alkyl groups (21), some of which lead to mesophases that have been reported as being "sanidic" or board-like. This approach has been used with both polyesters and polyamides and has lead to lyotropic and thermotropic polymers depending on the particular composition used. Some compositions even show die ability to form both lyotropic and thermotropic mesophases (22). [Pg.7]

The preparations of thermotropic polyester-amides from comparable monomers as those of thermotropic polyesters were a logical extension of a series of studies in thermotropic polyesters and lyotropic polyamides. (4.) However the inclusion of carbonates had rarely been explored.(5) Because of the flexibility of carbonate compared to substituted aromatic rings, it should be an even more effective approach in lowering the melting temperatures of the unmodified all aromatic polyesters into the easily processable range. [Pg.103]

Within the extensive literature on this subject, there are many examples of the synthesis of thermotropic polyesters, polyesteramides, polycarbonates, polyethers, polyurethanes and polyester-imides. Until recently, the main omissions had been thermotropic polyamides and polyimides however, many examples of polyamides that show lyotropic behaviour have been known for a long time. [Pg.199]

An empirical method for predicting the chemical compositions of random or partially ordered condensation copolymers which are capable of exhibiting mesophases (either in solution or in the melt) was devised by the author in 1989, while working on liquid crystal copolymer synthesis for BP Chemicals. A brief description of the method and its application to the chemical synthesis of amorphous thermotropic polyamides has been given in a previous paper [45] and a further more detailed description of the method is to be published shortly [46]. Subsequently, the method has been updated and applied to polycarbonates and polyimides. Thermotropic polyimides have also been synthesised by the author resulting from the use of the predictive method [43]. [Pg.202]

Mahabadi and Alexandru [74] have published data on thermotropic copolycarbonates of biphenol (BP) and diethylene glycol (DEG) with hydroquinone (HQ), methyl hydroquinone (MHQ), f-butyl HQ, oxydiphenol (ODP) or bis(4-hydroxyphenyl)methane (DPM) or bisphenol A. The tabulated compositions and calculated MI values are recorded with the published data on mesophase transitions in Table 4. Mesophases appear only to be present when the MI score >10.1. However, the gap in values between mesogenic materials and non-mes-ogenic materials in the three series reported is about +1 and therefore it cannot be claimed on this evidence alone that polycarbonates have a similar critical value to polyesters and polyamides. [Pg.213]

Ringsdorf s research group have prepared novel types of rigid-rod polyesters and polyamides 56 with a disc-like mesogen in tte mainchain [75]. Most polymers with six lateral substituents appear to be thermotropic liquid crystals. Polyamides with Z = H and having four substituents on the diamine component are not liquid crystalline. The two substituents on the diacid component seem to contribute to decrease further the intermolecular hydrogen bonding. [Pg.215]

As far as thermotropism is concerned, a limited number of papers in the literature have already shown a very promising future. Even wholly aromatic polyamides can be made thermotropic as soon as the strong intermolecular hydrogen bonding is weakened, as shown by Ringsdorf s research group [75]. [Pg.216]

In the following sections, the different concepts of structural modifications of LCPs will be discussed in more detail for thermotropic LC polyesters and briefly for lyotropic polyamides. The same structural modifications have been applied to other... [Pg.7]

The same structural modification concepts, which were utilized to modify the properties of para-linked aromatic LC polyesters, have also been applied to aromatic polyamides. Para-linked aromatic polyamides are an important class of LC polymers. In contrast to thermotropic LC polyesters, para-linked aromatic polyamides form lyotropic solutions. Due to the formation of intermolecular hydrogen bridges, these polymers are in most cases unable to melt below their thermal decomposition temperature. Infusibility and limited solubility of unsubstituted para-linked aromatic polyamides are characteristic properties which limit synthesis, characterization, processing, and applications. [Pg.22]


See other pages where Polyamides thermotropism is mentioned: [Pg.306]    [Pg.90]    [Pg.47]    [Pg.19]    [Pg.60]    [Pg.31]    [Pg.306]    [Pg.90]    [Pg.465]    [Pg.314]    [Pg.314]    [Pg.105]    [Pg.53]    [Pg.158]    [Pg.198]    [Pg.417]    [Pg.2687]    [Pg.160]    [Pg.190]    [Pg.221]    [Pg.279]    [Pg.501]    [Pg.177]    [Pg.214]    [Pg.214]    [Pg.227]    [Pg.60]    [Pg.297]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Thermotropic polyamides

Thermotropic polyamides

Thermotropism

© 2024 chempedia.info