Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly viscosities

Mitsoulis, E., Valchopoulos, J. and Mirza, F. A., 1985. A numerical study of the effect of normal stresses and elongational viscosity on entry vortex growth and extrudate swell. Poly. Eng. Sci. 25, 677 -669. [Pg.139]

Low viscosity 30% glass-fiber reinforced Poly(butylene terephthalate) Poly(ethylene terephthalate) ... [Pg.1044]

Strauss and Williamst have studied coil dimensions of derivatives of poly(4-vinylpyridine) by light-scattering and viscosity measurements. The derivatives studied were poly(pyridinium) ions quaternized y% with n-dodecyl groups and (1 - y)% with ethyl groups. Experimental coil dimensions extrapolated to 0 conditions and expressed relative to the length of a freely rotating repeat unit are presented here for the molecules in two different environments ... [Pg.70]

Simha equation), where a/b is the length/diameter ratio of these cigarshaped particles. Doty et al.t measure the intrinsic viscosity of poly(7-benzyl glutamate) in a chloroform-formamide solution and obtained (approximately) the following results ... [Pg.71]

Plazek et al.t measured the viscosities of a poly(dimethyl siloxane) sample of = 4.1 X 10 over a range of temperatures using the falling-ball method. Stainless steel (P2 = 7.81 g cm" ) balls of two different diameters,... [Pg.131]

Table 9.3 lists the intrinsic viscosity for a number of poly(caprolactam) samples of different molecular weight. The M values listed are number average figures based on both end group analysis and osmotic pressure experiments. Tlie values of [r ] were measured in w-cresol at 25°C. In the following example we consider the evaluation of the Mark-Houwink coefficients from these data. [Pg.605]

Table 9.3 Intrinsic Viscosity as a Function of Molecular Weight for Samples of Poly(caprolactam) ... Table 9.3 Intrinsic Viscosity as a Function of Molecular Weight for Samples of Poly(caprolactam) ...
The intrinsic viscosity of poly(7-benzyl-L-glutamate) (Mq = 219) shows such a strong molecular weight dependence in dimethyl formamide that the polymer was suspected to exist as a helix which approximates a prolate ellipsoid of revolution in its hydrodynamic behaviorf ... [Pg.652]

The major use of vinylpyrrohdinone is as a monomer in manufacture of poly(vinylpyrrohdinone) (PVP) homopolymer and in various copolymers, where it frequendy imparts hydrophilic properties. When PVP was first produced, its principal use was as a blood plasma substitute and extender, a use no longer sanctioned. These polymers are used in pharmaceutical and cosmetic appHcations, soft contact lenses, and viscosity index improvers. The monomer serves as a component in radiation-cured polymer compositions, serving as a reactive diluent that reduces viscosity and increases cross-linking rates (see... [Pg.114]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

The next significant strength improvement followed the 1950 Du Pont (19) discovery of monoamine and quaternary ammonium modifiers, which, when added to the viscose, prolonged the life of the ziac cellulose xanthate gel, and enabled even higher stretch levels to be used. Modifiers have proliferated siace they were first patented and the Hst now iacludes many poly(alkylene oxide) derivatives (20), polyhydroxypolyamines (21—23), and dithiocarbamates (24). [Pg.349]

AUoys of ceUulose with up to 50% of synthetic polymers (polyethylene, poly(vinyl chloride), polystyrene, polytetrafluoroethylene) have also been made, but have never found commercial appUcations. In fact, any material that can survive the chemistry of the viscose process and can be obtained in particle sizes of less than 5 p.m can be aUoyed with viscose. [Pg.350]

A type of physical stabili2ation process, unique for poly(vinyl chloride) resias, is the fusion of a dispersion of plastisol resia ia a plastici2er. The viscosity of a resia—plastici2er dispersioa shows a sharp iacrease at the fusioa temperature. Ia such a system expansioa can take place at a temperature corresponding to the low viscosity the temperature can then be raised to iacrease viscosity and stabili2e the expanded state. [Pg.407]

Sintering has been used to produce a porous polytetrafluoroethylene (16). Cellulose sponges are the most familiar cellular polymers produced by the leaching process (123). Sodium sulfate crystals are dispersed in the viscose symp and subsequently leached out. Polyethylene (124) or poly(vinyl chloride) can also be produced in cellular form by the leaching process. The artificial leather-tike materials used for shoe uppers are rendered porous by extraction of salts (125) or by designing the polymers in such a way that they precipitate as a gel with many holes (126). [Pg.408]

Other thickeners used include derivatives of ceUulose such as methylceUulose, hydroxypropylmethylceUulose, and ceUulose gum natural gums such as tragacanth and xanthan (see Cellulose ethers Gums) the carboxyvinyl polymers and the poly(vinyl alcohol)s. The magnesium aluminum siHcates, glycol stearates, and fatty alcohols in shampoos also can affect viscosity. [Pg.450]

The viscosity of the latex can also be dependent on pH. In the case of some latices, lowering the pH with a weak acid such as glycine is an effective method for raising the viscosity without destabilising the system. Latices made with poly(vinyl alcohol) as the primary emulsifier can be thickened by increasing the pH with a strong alkaU. [Pg.28]

Poly(alkylene glycol)s have a number of characteristics that make them desirable as lubricants. Compared to petroleum lubricants, they have lower pour points, a higher viscosity index, and a wider range of solubilities including water, compatibility with elastomers, less tendency to form tar and sludge, and lower vapor pressure (35). [Pg.245]

In fluorescent lamps, phosphors are coated on the inside of the lamp tube using a slurry containing the powder and a Hquid which is either poured down through the tube, up-flushed, or in some cases the tubes are filled and then drained. Because of concerns over having volatile organic solvents in the air, the hquid medium containing the powder is usually water with an added agent, a thickener, to increase the viscosity of the suspension, such as poly(methacryhc... [Pg.286]

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

Thickeners. Thickeners are added to remover formulas to increase the viscosity which allows the remover to cling to vertical surfaces. Natural and synthetic polymers are used as thickeners. They are generally dispersed and then caused to swell by the addition of a protic solvent or by adjusting the pH of the remover. When the polymer swells, it causes the viscosity of the mixture to increase. Viscosity is controlled by the amount of thickener added. Common thickeners used in organic removers include hydroxypropylmethylceUulose [9004-65-3], hydroxypropylceUulose [9004-64-2], hydroxyethyl cellulose, and poly(acryHc acid) [9003-01-4]. Thickeners used in aqueous removers include acryHc polymers and latex-type polymers. Some thickeners are not stable in very acidic or very basic environments, so careful selection is important. [Pg.550]

Concentration and Molecular Weight Effects. The viscosity of aqueous solutions of poly(ethylene oxide) depends on the concentration of the polymer solute, the molecular weight, the solution temperature, concentration of dissolved inorganic salts, and the shear rate. Viscosity increases with concentration and this dependence becomes more pronounced with increasing molecular weight. This combined effect is shown in Figure 3, in which solution viscosity is presented as a function of concentration for various molecular weight polymers. [Pg.338]


See other pages where Poly viscosities is mentioned: [Pg.541]    [Pg.16]    [Pg.80]    [Pg.130]    [Pg.88]    [Pg.172]    [Pg.297]    [Pg.350]    [Pg.426]    [Pg.380]    [Pg.531]    [Pg.532]    [Pg.535]    [Pg.64]    [Pg.149]    [Pg.264]    [Pg.476]    [Pg.28]    [Pg.245]    [Pg.42]    [Pg.296]    [Pg.298]    [Pg.442]    [Pg.10]    [Pg.10]    [Pg.179]    [Pg.182]    [Pg.192]    [Pg.281]    [Pg.304]   
See also in sourсe #XX -- [ Pg.167 ]

See also in sourсe #XX -- [ Pg.253 ]

See also in sourсe #XX -- [ Pg.93 ]

See also in sourсe #XX -- [ Pg.167 ]

See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Poly , inherent viscosities

Poly , intrinsic viscosities

Poly [methyl viscosity

Poly acid viscosity

Poly adhesives initial viscosity

Poly melt viscosity

Poly process viscosities

Poly relative viscosities

Poly solution viscosity

Poly viscosity-molecular weight relationship

Poly zero-shear viscosity

Poly,butadienes viscosity

Viscosities, dilute solution poly

© 2024 chempedia.info