Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly intrinsic viscosity

Simha equation), where a/b is the length/diameter ratio of these cigarshaped particles. Doty et al.t measure the intrinsic viscosity of poly(7-benzyl glutamate) in a chloroform-formamide solution and obtained (approximately) the following results ... [Pg.71]

Table 9.3 lists the intrinsic viscosity for a number of poly(caprolactam) samples of different molecular weight. The M values listed are number average figures based on both end group analysis and osmotic pressure experiments. Tlie values of [r ] were measured in w-cresol at 25°C. In the following example we consider the evaluation of the Mark-Houwink coefficients from these data. [Pg.605]

Table 9.3 Intrinsic Viscosity as a Function of Molecular Weight for Samples of Poly(caprolactam) ... Table 9.3 Intrinsic Viscosity as a Function of Molecular Weight for Samples of Poly(caprolactam) ...
The intrinsic viscosity of poly(7-benzyl-L-glutamate) (Mq = 219) shows such a strong molecular weight dependence in dimethyl formamide that the polymer was suspected to exist as a helix which approximates a prolate ellipsoid of revolution in its hydrodynamic behaviorf ... [Pg.652]

The presence of inorganic salts in solutions of poly(ethylene oxide) also can reduce the hydrodynamic volume of the polymer, with attendant reduction in intrinsic viscosity this effect is shown in Figure 7. [Pg.340]

Fig. 7. Effects of salts on the intrinsic viscosity of poly(ethylene oxide) at 30°C. Molecular weight is 5.5 x 10 (3). Fig. 7. Effects of salts on the intrinsic viscosity of poly(ethylene oxide) at 30°C. Molecular weight is 5.5 x 10 (3).
Molecular Weight. Measurement of intrinsic viscosity in water is the most commonly used method to determine the molecular weight of poly(ethylene oxide) resins. However, there are several problems associated with these measurements (86,87). The dissolved polymer is susceptible to oxidative and shear degradation, which is accelerated by filtration or dialysis. If the solution is purified by centrifiigation, precipitation of the highest molecular weight polymers can occur and the presence of residual catalyst by-products, which remain as dispersed, insoluble soHds, further compHcates purification. [Pg.343]

Unlike other water-soluble resins the poly(ethylene oxide)s may be injection moulded, extruded and calendered without difficulty. The viscosity is highly dependent on shear rate and to a lesser extent on temperature. Processing temperatures in the range 90-130°C may be used for polymers with an intrinsic viscosity of about 2.5. (The intrinsic viscosity is used as a measure of molecular weight.)... [Pg.547]

For poly electrolyte solutions with added salt, prior experimental studies found that the intrinsic viscosity decreases with increasing salt concentration. This can be explained by the tertiary electroviscous effect. As more salts are added, the intrachain electrostatic repulsion is weakened by the stronger screening effect of small ions. As a result, the polyelectrolytes are more compact and flexible, leading to a smaller resistance to fluid flow and thus a lower viscosity. For a wormlike-chain model by incorporating the tertiary effect on the chain... [Pg.104]

The results of intrinsic viscosity measurements for four polymer-solvent systems made at the -temperature of each are shown in Fig. 141. The four systems and their -temperatures are polyisobutylene in benzene at 24°C, polystyrene in cyclohexane at 34°C, poly-(di-methylsiloxane) in methyl ethyl ketone at 20°C, and cellulose tricapry-late in 7-phenylpropyl alcohol at 48°C. In each case a series of poly-... [Pg.613]

Poly(N-phenyl-3,4-dimethylenepyrroline) had a higher melting point than poly(N-phenyl-3,4-dimethylenepyrrole) (171° vs 130°C). However, the oxidized polymer showed a better heat stability in the thermogravimetric analysis. This may be attributed to the aromatic pyrrole ring structures present in the oxidized polymer, because the oxidized polymer was thermodynamically more stable than the original polymer. Poly(N-phenyl-3,4-dimethylenepyrroline) behaved as a polyelectrolyte in formic acid and had an intrinsic viscosity of 0.157 (dL/g) whereas, poly(N-pheny1-3,4-dimethylenepyrrole) behaved as a polyelectrolyte in DMF and had an intrinsic viscosity of 0.099 (dL/g). No common solvent for these two polymers could be found, therefore, a comparison of the viscosities before and after the oxidation was not possible. [Pg.140]

Alkyl Radical, R, in Poly (R-Methacrylate) Reactive Hydrogen on Alkyl Carbon Atom No. Intrinsic Viscosity in MEK, 23°C Hours to Attain 50% Insolubility... [Pg.185]

In addition, data on the size, shape and solvation of the polymer particles in aqueous solutions at temperatures below and above the transition phenomena registered by HS-DSC have been obtained [42]. Table 2 shows the results of capillary viscometry and light scattering experiments for the fractions p and s of poly(NVCl-co-NVIAz) synthesized at 65 °C from the feed with the initial molar comonomer ratio equal to 85 15. Since fraction p precipitates from the aqueous solution at temperatures > 34 °C, its intrinsic viscosity can be determined only at 20 °C, whereas for the fraction s such measurements were possible above and below the temperatures of the HS-DSC-registered conformational transition. [Pg.126]

Materials. Four samples of sodium poly(styrenesulfonate) (NaPSS) prepared by sulfonation of polystyrenes with narrow molecular weight distribution were purchased from Pressure Chemical Co. The characteristics of the samples, according to the manufacturer, are listed in Table I. The intrinsic viscosities of NaPSS in aqueous NaCl solution were measured using an Ubbelhode viscometer at 25 °C. [Pg.40]

The solution properties of dendrigraft polybutadienes are, as in the previous cases discussed, consistent with a hard sphere morphology. The intrinsic viscosity of arborescent-poly(butadienes) levels off for the G1 and G2 polymers. Additionally, the ratio of the radius of gyration in solution (Rg) to the hydrodynamic radius (Rb) of the molecules decreases from RJRb = 1.4 to 0.8 from G1 to G2. For linear polymer chains with a coiled conformation in solution, a ratio RJRb = 1.48-1.50 is expected. For rigid spheres, in comparison, a limiting value RJRb = 0.775 is predicted. [Pg.220]

Materials Used, The poly(vinyl alcohol) used in this study was a commercial (Borden chemical) grade of fully hydrolyzed material which had an aqueous intrinsic viscosity of 0,762 which corresponds to a molecular weight of about 59,900. This material was dried in a vacuum oven for several days at about 100°C and 10 torr before it was used in the modification experiments. Dry, analytical grade dimethyl sulfoxide (DMSO) was used as supplied. [Pg.93]

Solution Viscosity Studies. Ths polymer solution viscosity was run on two modified polymers and the original poly(vinyl alcohol) at 30°C in DMSO solutions using a series 100 Cannon-Fenske viscometer. The observed specific viscosities and the intrinsic viscosity for each of these samples are summarized in Table III. [Pg.95]

Polymers containing pendant carbamate functional groups can be prepared by the reaction of phenyl isocyanate with poly(vinyl alcohol) in homogeneous dimethylsulfoxide solutions using a tri-ethylamine catalyst. These modified polymers are soluble in dimethyl sulfoxide, dimethylacetamide, dimethylformamide and formic acid but are insoluble in water, methanol and xylene. Above about 50% degree of substitution, the polymers are also soluble in acetic acid and butyrolactone. The modified polymers contain aromatic, C = 0, NH and CN bands in the infrared and show a diminished OH absorption. Similar results were noted in the NMR spectroscopy. These modified polymers show a lower specific and intrinsic viscosity in DMSO solutions than does the unmodified poly(vinyl alcohol) and this viscosity decreases as the degree of substitution increases. [Pg.99]

Photolysis of the unsubstituted poly(ethylene sebacamide) (A), methylated poly(l,2-propylene sebacamide) (B), and poly(l,l-dimethylethylene sebacamide) (C) resulted in mostly chain fragmentation as indicated by the decreases in intrinsic viscosities of the polymer samples, Table 1. The same decrease in intrinsic viscosity was also observed for polyurea D. Polymer A and D remained bio-inert under the testing condition whereas the abilities for polymers B and C to support the growth of Apergillus niger were improved by photolysis. [Pg.301]

Table 2 contains the characteristics of the amic ester-aryl ether copolymers including coblock type, composition, and intrinsic viscosity. Three series of copolymers were prepared in which the aryl ether phenylquinoxaline [44], aryl ether benzoxazole [47], or aryl ether ether ketone oligomers [57-59] were co-re-acted with various compositions of ODA and PMDA diethyl ester diacyl chloride samples (2a-k). The aryl ether compositions varied from approximately 20 to 50 wt% (denoted 2a-d) so as to vary the structure of the microphase-separated morphology of the copolymer. The composition of aryl ether coblock in the copolymers, as determined by NMR, was similar to that calculated from the charge of the aryl ether coblock (Table 2). The viscosity measurements, also shown in Table 2, were high and comparable to that of a high molecular weight poly(amic ethyl ester) homopolymer. In some cases, a chloroform solvent rinse was required to remove aryl ether homopolymer contamination. It should also be pointed out that both the powder and solution forms of the poly(amic ethyl ester) copolymers are stable and do not undergo transamidization reactions or viscosity loss with time, unlike their poly(amic acid) analogs. Table 2 contains the characteristics of the amic ester-aryl ether copolymers including coblock type, composition, and intrinsic viscosity. Three series of copolymers were prepared in which the aryl ether phenylquinoxaline [44], aryl ether benzoxazole [47], or aryl ether ether ketone oligomers [57-59] were co-re-acted with various compositions of ODA and PMDA diethyl ester diacyl chloride samples (2a-k). The aryl ether compositions varied from approximately 20 to 50 wt% (denoted 2a-d) so as to vary the structure of the microphase-separated morphology of the copolymer. The composition of aryl ether coblock in the copolymers, as determined by NMR, was similar to that calculated from the charge of the aryl ether coblock (Table 2). The viscosity measurements, also shown in Table 2, were high and comparable to that of a high molecular weight poly(amic ethyl ester) homopolymer. In some cases, a chloroform solvent rinse was required to remove aryl ether homopolymer contamination. It should also be pointed out that both the powder and solution forms of the poly(amic ethyl ester) copolymers are stable and do not undergo transamidization reactions or viscosity loss with time, unlike their poly(amic acid) analogs.

See other pages where Poly intrinsic viscosity is mentioned: [Pg.480]    [Pg.264]    [Pg.541]    [Pg.76]    [Pg.110]    [Pg.559]    [Pg.317]    [Pg.623]    [Pg.629]    [Pg.245]    [Pg.17]    [Pg.21]    [Pg.146]    [Pg.67]    [Pg.191]    [Pg.222]    [Pg.376]    [Pg.592]    [Pg.33]    [Pg.215]    [Pg.233]    [Pg.335]    [Pg.399]    [Pg.613]    [Pg.14]    [Pg.143]    [Pg.442]    [Pg.98]    [Pg.67]    [Pg.296]   


SEARCH



Intrinsic viscosity

Poly viscosity

© 2024 chempedia.info