Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly separators

As discussed in section A 1.2.17. the existence of the approximate poly ad numbers, corresponding to short-time bottlenecks to energy flow, could be very important in efforts for laser control, apart from the separate question of bifiircation phenomena. [Pg.78]

The phenomena we discuss, phase separation and osmotic pressure, are developed with particular attention to their applications in polymer characterization. Phase separation can be used to fractionate poly disperse polymer specimens into samples in which the molecular weight distribution is more narrow. Osmostic pressure experiments can be used to provide absolute values for the number average molecular weight of a polymer. Alternative methods for both fractionation and molecular weight determination exist, but the methods discussed in this chapter occupy a place of prominence among the alternatives, both historically and in contemporary practice. [Pg.505]

If the poorer solvent is added incrementally to a system which is poly-disperse with respect to molecular weight, the phase separation affects molecules of larger n, while shorter chains are more uniformly distributed. These ideas constitute the basis for one method of polymer fractionation. We shall develop this topic in more detail in the next section. [Pg.535]

VDP Polyimides. Polyimide films have also been prepared by a kind of VDP (16). The poly(amic acid) layer is first formed by the coevaporation and condensation of two monomers, followed by copolymerization on the substrate. The imidization is carried out in a separate baking step (see POLYIMIDES). [Pg.430]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

The selectivity of pervaporation membranes varies considerably and has a critical effect on the overall separation obtained. The range of results that can be obtained for the same solutions and different membranes is illustrated in Figure 41 for the separation of acetone from water using two types of membrane (89). The figure shows the concentration of acetone in the permeate as a function of the concentration in the feed. The two membranes shown have dramatically different properties. The siUcone mbber membrane removes acetone selectively, whereas the cross-linked poly(vinyl alcohol) (PVA) membrane removes water selectively. This difference occurs because siUcone mbber is hydrophobic and mbbery, thus permeates the acetone preferentially. PVA, on the other hand, is hydrophilic and glassy, thus permeates the small hydrophilic water molecules preferentially. [Pg.86]

Fig. 41. The pervaporation separation of acetone—water mixtures achieved with a water-selective poly(vinyl alcohol) (PVA) membrane and with an acetone-selective siUcone mbber membrane. The PVA membrane is best suited to removing small amounts of water from a concentrated acetone solution, whereas the siUcone mbber membrane is best suited to removing small amounts of acetone from a dilute acetone stream (89). Fig. 41. The pervaporation separation of acetone—water mixtures achieved with a water-selective poly(vinyl alcohol) (PVA) membrane and with an acetone-selective siUcone mbber membrane. The PVA membrane is best suited to removing small amounts of water from a concentrated acetone solution, whereas the siUcone mbber membrane is best suited to removing small amounts of acetone from a dilute acetone stream (89).
The acetone-selective, siUcone mbber membrane is best used to treat dilute acetone feed streams and concentrate most of the acetone in a small volume of permeate. The water-selective, poly(vinyl alcohol) membrane is best used to treat concentrated acetone feed streams containing only a few percent water. Most of the water is then removed and concentrated in the permeate. Both membranes are more selective than distillation, which rehes on the vapor—hquid equiUbrium to achieve a separation. [Pg.87]

Several parenteral microencapsulated products have been commercialized the cote materials ate polypeptides with hormonal activity. Poly(lactide— glycohde) copolymers ate the sheU materials used. The capsules ate produced by solvent evaporation, polymer-polymer phase separation, or spray-dry encapsulation processes. They release their cote material over a 30 day period in vivo, although not at a constant rate. [Pg.324]

Membrane Sep r tion. The separation of components ofhquid milk products can be accompHshed with semipermeable membranes by either ultrafiltration (qv) or hyperfiltration, also called reverse osmosis (qv) (30). With ultrafiltration (UF) the membrane selectively prevents the passage of large molecules such as protein. In reverse osmosis (RO) different small, low molecular weight molecules are separated. Both procedures require that pressure be maintained and that the energy needed is a cost item. The materials from which the membranes are made are similar for both processes and include cellulose acetate, poly(vinyl chloride), poly(vinyHdene diduoride), nylon, and polyamide (see AFembrane technology). Membranes are commonly used for the concentration of whey and milk for cheesemaking (31). For example, membranes with 100 and 200 p.m are used to obtain a 4 1 reduction of skimmed milk. [Pg.368]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

Noncrystalline aromatic polycarbonates (qv) and polyesters (polyarylates) and alloys of polycarbonate with other thermoplastics are considered elsewhere, as are aHphatic polyesters derived from natural or biological sources such as poly(3-hydroxybutyrate), poly(glycoHde), or poly(lactide) these, too, are separately covered (see Polymers, environmentally degradable Sutures). Thermoplastic elastomers derived from poly(ester—ether) block copolymers such as PBT/PTMEG-T [82662-36-0] and known by commercial names such as Hytrel and Riteflex are included here in the section on poly(butylene terephthalate). Specific polymers are dealt with largely in order of volume, which puts PET first by virtue of its enormous market volume in bottie resin. [Pg.292]


See other pages where Poly separators is mentioned: [Pg.152]    [Pg.72]    [Pg.733]    [Pg.2500]    [Pg.2585]    [Pg.1091]    [Pg.191]    [Pg.537]    [Pg.207]    [Pg.207]    [Pg.229]    [Pg.230]    [Pg.230]    [Pg.231]    [Pg.322]    [Pg.329]    [Pg.329]    [Pg.330]    [Pg.330]    [Pg.363]    [Pg.72]    [Pg.149]    [Pg.150]    [Pg.154]    [Pg.155]    [Pg.476]    [Pg.25]    [Pg.546]    [Pg.548]    [Pg.64]    [Pg.85]    [Pg.259]    [Pg.265]    [Pg.298]    [Pg.393]    [Pg.489]    [Pg.149]    [Pg.150]   
See also in sourсe #XX -- [ Pg.247 , Pg.252 , Pg.256 , Pg.263 , Pg.277 , Pg.283 ]




SEARCH



Phase separations in poly

Poly column separations accomplished

Poly gels separations with

Poly networks phase-separation process, morphologies

Poly phase separation

Poly phase separation role

Poly phase-separated morphology

Poly phase-separated patterns

Poly separated polarons

Poly separation

Poly separation

Polystyrene-poly , phase separation

Separator poly -bonded phases

© 2024 chempedia.info