Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly : PMMA

Table 8. End-group analysis of poly(PMMA macromonomer) prepared with AIBN-d12 in toluene at 60°C for 24 h. [Pg.131]

Mixtures of polymers at surfaces provide the interesting possibility of exploring polymer miscibility in two dimensions. Baglioni and co-workers [17] have shown that polymers having the same orientation at the interface are compatible while those having different orientations are not. Some polymers have their hydrophobic portions parallel to the surface, while others have a perpendicular disposition. The surface orientation effect is also present in mixtures of poly(methyl methacrylate), PMMA, and fatty acids. [Pg.541]

Anotlier model system consists of polymetliylmetliacrylate (PMMA) latex, stabilized in organic solvents by a comb polymer, consisting of a PMMA backbone witli poly-12-hydroxystearic acid (PHSA) chains attached to it [10]. The PHSA chains fonn a steric stabilization layer at tire surface (see section C2.6.4). Such particles can approach tire hard-sphere model very well [111. [Pg.2670]

Poly(methyl methacrylate) (PMMA) Ethylene-chlorotrifluoroethylene copolymer... [Pg.1010]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

The cured polymers are hard, clear, and glassy thermoplastic resins with high tensile strengths. The polymers, because of their highly polar stmcture, exhibit excellent adhesion to a wide variety of substrate combinations. They tend to be somewhat britde and have only low to moderate impact and peel strengths. The addition of fillers such as poly (methyl methacrylate) (PMMA) reduces the brittleness somewhat. Newer formulations are now available that contain dissolved elastomeric materials of various types. These mbber-modifted products have been found to offer adhesive bonds of considerably improved toughness (3,4). [Pg.178]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]

Examples of photothermoplasts include polyacrylates, polyacrylamides, polystyrenes, polycarbonates, and their copolymers (169). An especially well-re searched photothermoplast is poly(methyl methacrylate) (PMMA), which is blended with methyl methacrylate (MMA) or styrene as a monomer, and titanium-bis(cyclopentadienyl) as a photoinitiator (170). [Pg.154]

New PHB materials are composed of Zn-tetraben2oporphyrin—aromatic cyanide—poly (methyl methacrylate) (180) or of tetraphenylporphyrin derivatives dispersed in polymer matrices such as PMMA and polyethylene (181). A survey of such materials has been given (181). [Pg.156]

Poly(methyl methacrylate). PMMA offers distinct advantages over BPA-PC with respect to significandy lower birefringence, higher modulus, and lower costs, but has not been successhil as a material for audio CDs and CD-ROM as well as a substrate material for WORM and EOD disks because of its high water absorption (which makes it prone to warp) and its unsuitabiUty for metallising, and less so because of its low resistance to... [Pg.160]

Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass. Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass.
The cadmium chalcogenide semiconductors (qv) have found numerous appHcations ranging from rectifiers to photoconductive detectors in smoke alarms. Many Cd compounds, eg, sulfide, tungstate, selenide, teUuride, and oxide, are used as phosphors in luminescent screens and scintiUation counters. Glass colored with cadmium sulfoselenides is used as a color filter in spectroscopy and has recently attracted attention as a third-order, nonlinear optical switching material (see Nonlinear optical materials). DiaLkylcadmium compounds are polymerization catalysts for production of poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVA), and poly(methyl methacrylate) (PMMA). Mixed with TiCl, they catalyze the polymerization of ethylene and propylene. [Pg.392]

Hard lenses can be defined as plastic lenses that contain no water, have moduli in excess of 5 MPa (500 g/mm ), and have T well above the temperature of the ocular environment. Poly(methyl methacrylate) (PMMA) has excellent optical and mechanical properties and scratch resistance and was the first and only plastic used as a hard lens material before higher oxygen-permeable materials were developed. PMMA lenses also show excellent wetting in the ocular environment even though they are hydrophobic, eg, the contact angle is 66°. [Pg.101]

EVAL is a poly(vinyl alcohol), a copolymer of ethylene and vinyl alcohol. PMMA = poly(methyl methacrylate). [Pg.35]

Following the success in blending rubbery materials into polystyrene, styrene-acrylonitrile and PVC materials to produce tough thermoplastics the concept has been used to produce high-impact PMMA-type moulding compounds. These are two-phase materials in which the glassy phase consists of poly(methyl methacrylate) and the rubbery phase an acrylate polymer, usually poly(butyl acrylate Commercial materials of the type include Diakon MX (ICI), Oroglas... [Pg.413]

VV -values for bromoform and pyrrole, acidic liquids, against poly(vinyl chloride), an acidic polymer, and dimethyl sulfoxide, a predominantly basic liquid, against polyfmethyl methacrylate), a basic polymer, but large values for the acidic liquids against PMMA and the basic liquid against PVC. 2-Iodoethanol, a bifunctional liquid, showed appreciable -values with both polymers. Despite these results in line with expectations, other results based on wettability measurements are not so clear-cut. For example, Vrbanac [94] found significant apparent acid-base interactions of various aromatic liquids against poly(ethylene), presumably a neutral substrate. [Pg.40]

An example of this improvement in toughness can be demonstrated by the addition of Vamac B-124, an ethylene/methyl acrylate copolymer from DuPont, to ethyl cyanoacrylate [24-26]. Three model instant adhesive formulations, a control without any polymeric additive (A), a formulation with poly(methyl methacrylate) (PMMA) (B), and a formulation with Vamac B-124 (C), are shown in Table 4. The formulation with PMMA, a thermoplastic which is added to modify viscosity, was included to determine if the addition of any polymer, not only rubbers, could improve the toughness properties of an alkyl cyanoacrylate instant adhesive. To demonstrate an improvement in toughness, the three formulations were tested for impact strength, 180° peel strength, and lapshear adhesive strength on steel specimens, before and after thermal exposure at 121°C. [Pg.857]

FIGURE 9.32 Analysis of biodegradable poly(lactic acid). Columns PSS PFG 100 + 1000. Eluent TFE + 0.1 M NatFat. Temp 2S°C. Detection UV 230 nm, Rl. Calibration PSS PMMA ReadyCal kit. [Pg.302]

In this stage of the investigation, poly(methyl methacrylates) (PMMAs) were selected as the polymeric probes of intermediate polarity. Polymers of medium broad molar mass distribution and of low tacticity (14) were a gift of Dr. W. Wunderlich of Rohm Co., Darmstadt, Germany. Their molar masses ranged from 1.6 X 10" to 6.13 X 10 g-mol. For some comparative tests, narrow polystyrene standards from Pressure Co. (Pittsburgh, PA) were used. [Pg.448]


See other pages where Poly : PMMA is mentioned: [Pg.131]    [Pg.131]    [Pg.541]    [Pg.2629]    [Pg.773]    [Pg.207]    [Pg.377]    [Pg.546]    [Pg.330]    [Pg.330]    [Pg.154]    [Pg.161]    [Pg.259]    [Pg.265]    [Pg.531]    [Pg.393]    [Pg.135]    [Pg.148]    [Pg.409]    [Pg.411]    [Pg.411]    [Pg.422]    [Pg.439]    [Pg.99]    [Pg.102]    [Pg.488]    [Pg.411]    [Pg.252]    [Pg.66]    [Pg.101]    [Pg.113]    [Pg.829]    [Pg.294]   
See also in sourсe #XX -- [ Pg.8 , Pg.9 , Pg.26 , Pg.30 , Pg.41 , Pg.46 , Pg.96 , Pg.100 , Pg.101 , Pg.118 , Pg.119 , Pg.146 , Pg.147 , Pg.148 , Pg.154 ]

See also in sourсe #XX -- [ Pg.16 , Pg.59 , Pg.135 , Pg.137 , Pg.175 , Pg.176 , Pg.177 , Pg.178 , Pg.179 , Pg.180 , Pg.181 , Pg.182 , Pg.404 , Pg.405 , Pg.434 , Pg.698 , Pg.699 ]

See also in sourсe #XX -- [ Pg.8 , Pg.9 , Pg.26 , Pg.30 , Pg.41 , Pg.46 , Pg.96 , Pg.100 , Pg.101 , Pg.118 , Pg.119 , Pg.146 , Pg.147 , Pg.148 , Pg.154 ]

See also in sourсe #XX -- [ Pg.5 , Pg.10 , Pg.12 , Pg.133 , Pg.147 , Pg.152 , Pg.211 , Pg.227 , Pg.233 , Pg.236 , Pg.273 , Pg.279 , Pg.306 , Pg.321 , Pg.338 , Pg.350 , Pg.353 , Pg.359 , Pg.361 , Pg.364 , Pg.415 , Pg.452 , Pg.457 , Pg.460 , Pg.486 , Pg.507 , Pg.517 , Pg.553 , Pg.585 , Pg.593 , Pg.599 ]

See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Cellulose acetate poly (PMMA

PMMA

PMMA (poly[methyl methacrylate

PMMA films, thick Poly

PMMA-block-poly

PMMA—See Poly

PMMA—See Poly(methyl

Poly (PMMA ATRP approach

Poly (PMMA curve

Poly (PMMA mechanical properties

Poly -graft-PMMA

Poly : PMMA pharmaceuticals

Poly PMMA composites

Poly acrylics PMMA, structure

Poly random copolymer blend with PMMA

Poly siloxane/PMMA

Poly(methyl methacrylate) (PMMA)-based Nanocomposites

Poly(methyl methacrylate) Polymer (PMMA)

Poly(methylmethacrylate) (PMMA) Blends

Typical Measurements on Poly(Methyl Methacrylate) (PMMA)

© 2024 chempedia.info