Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , miscibility

Mixtures of polymers at surfaces provide the interesting possibility of exploring polymer miscibility in two dimensions. Baglioni and co-workers [17] have shown that polymers having the same orientation at the interface are compatible while those having different orientations are not. Some polymers have their hydrophobic portions parallel to the surface, while others have a perpendicular disposition. The surface orientation effect is also present in mixtures of poly(methyl methacrylate), PMMA, and fatty acids. [Pg.541]

Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]

Sulfonation has been used to change some characteristics of blends. Poly(2,6-diphenyl-l,4-phenylene oxide) and polystyrene are immiscible. However, when the polymers were functionalized by sulfonation, even though they remained immiscible when blended, the functionalization increased interfacial interactions and resulted in improved properties (65). In the case of DMPPO and poly(ethyl acrylate) the originally immiscible blends showed increased miscibility with sulfonation (66). [Pg.330]

Polymer Blends. The miscibility of poly(ethylene oxide) with a number of other polymers has been studied, eg, with poly (methyl methacrylate) (18—23), poly(vinyl acetate) (24—27), polyvinylpyrroHdinone (28), nylon (29), poly(vinyl alcohol) (30), phenoxy resins (31), cellulose (32), cellulose ethers (33), poly(vinyl chloride) (34), poly(lactic acid) (35), poly(hydroxybutyrate) (36), poly(acryhc acid) (37), polypropylene (38), and polyethylene (39). [Pg.342]

Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ... Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ...
Poly(2,6-dimethyl-l54-phenylene oxide). It is well estabhshed that PS and PPO are miscible in all proportions and that the mbber particles from HIPS are distributed uniformly throughout the new mixed matrix. [Pg.420]

DADC may be polymerised industrially with small amounts of other miscible Hquid monomers. Some acryflc ester monomers and maleic anhydride may accelerate polymerisation. Copolymerisation with methacrylates, diaHyl phthalates, triaHyl isocyanurate, maleates, maleimides, and unsaturated polyesters are among the examples in the early Hterature. Copolymers of DADC with poly-functional unsaturated esters give castings of high clarity for eyeglass lenses and other optical appHcations (20). [Pg.83]

Silicone Resins. Sihcone resins are an unusual class of organosdoxane polymers. Unlike linear poly(siloxanes), the typical siUcone resin has a highly branched molecular stmcture. The most unique, and perhaps most usehil, characteristics of these materials are their solubiUty in organic solvents and apparent miscibility in other polymers, including siUcones. The incongmity between solubiUty and three-dimensional stmcture is caused by low molecular weight < 10, 000 g/mol) and broad polydispersivity of most sihcone resins. [Pg.56]

Poly(ethyl methacrylate) (PEMA) yields truly compatible blends with poly(vinyl acetate) up to 20% PEMA concentration (133). Synergistic improvement in material properties was observed. Poly(ethylene oxide) forms compatible homogeneous blends with poly(vinyl acetate) (134). The T of the blends and the crystaUizabiUty of the PEO depend on the composition. The miscibility window of poly(vinyl acetate) and its copolymers with alkyl acrylates can be broadened through the incorporation of acryUc acid as a third component (135). A description of compatible and incompatible blends of poly(vinyl acetate) and other copolymers has been compiled (136). Blends of poly(vinyl acetate) copolymers with urethanes can provide improved heat resistance to the product providing reduced creep rates in adhesives used for vinyl laminating (137). [Pg.467]

Poly(vinyl chloride) is commercially available in the form of aqueous colloidal dispersions (latices). They are the uncoagulated products of emulsion polymerisation process and are used to coat or impregnate textiles and paper. The individual particles are somewhat less than 1 p,m in diameter. The latex may be coagulated by concentrated acids, polyvalent cations and by dehydration with water-miscible liquids. [Pg.355]

Either methanol or ethanol may be used to effect alcoholysis but the former is often preferred because of its miscibility with poly(vinyl acetate) at room... [Pg.389]

The GBR resin works well for nonionic and certain ionic polymers such as various native and derivatized starches, including sodium carboxymethylcel-lulose, methylcellulose, dextrans, carrageenans, hydroxypropyl methylcellu-lose, cellulose sulfate, and pullulans. GBR columns can be used in virtually any solvent or mixture of solvents from hexane to 1 M NaOH as long as they are miscible. Using sulfonated PDVB gels, mixtures of methanol and 0.1 M Na acetate will run many polar ionic-type polymers such as poly-2-acrylamido-2-methyl-l-propanesulfonic acid, polystyrene sulfonic acids, and poly aniline/ polystyrene sulfonic acid. Sulfonated columns can also be used with water glacial acetic acid mixtures, typically 90/10 (v/v). Polyacrylic acids run well on sulfonated gels in 0.2 M NaAc, pH 7.75. [Pg.400]

Most of the chiral membrane-assisted applications can be considered as a modality of liquid-liquid extraction, and will be discussed in the next section. However, it is worth mentioning here a device developed by Keurentjes et al., in which two miscible chiral liquids with opposing enantiomers of the chiral selector flow counter-currently through a column, separated by a nonmiscible liquid membrane [179]. In this case the selector molecules are located out of the liquid membrane and both enantiomers are needed. The system allows recovery of the two enantiomers of the racemic mixture to be separated. Thus, using dihexyltartrate and poly(lactic acid), the authors described the resolution of different drugs, such as norephedrine, salbu-tamol, terbutaline, ibuprofen or propranolol. [Pg.15]

Park et al. [20] reported on the synthesis of poly-(chloroprene-co-isobutyl methacrylate) and its compati-bilizing effect in immiscible polychloroprene-poly(iso-butyl methacrylate) blends. A copolymer of chloroprene rubber (CR) and isobutyl methacrylate (iBMA) poly[CP-Co-(BMA)] and a graft copolymer of iBMA and poly-chloroprene [poly(CR-g-iBMA)] were prepared for comparison. Blends of CR and PiBMA are prepared by the solution casting technique using THF as the solvent. The morphology and glass-transition temperature behavior indicated that the blend is an immiscible one. It was found that both the copolymers can improve the miscibility, but the efficiency is higher in poly(CR-Co-iBMA) than in poly(CR-g-iBMA),... [Pg.638]

With diblock copolymers, similar behavior is also observed. One component is enriched at the surface and depending on miscibility and composition a surface-induced ordered lamellar structure normal to the surface may be formed. Recent investigations include poly (urethanes) [111], poly(methoxy poly (ethyleneglycol) methacrylate)/PS [112] and PS/PMMA [113, 114]. In particular the last case has been extensively studied by various techniques including XPS, SIMS, NR and optical interferometry. PS is enriched at the surface depending on blockcopolymer composition and temperature. A well ordered lamellar structure normal to the surface is found under favourable conditions. Another example is shown in Fig. 6 where the enrichment of poly(paramethylstyrene), PMS(H), in a thin film of a di-... [Pg.381]

Blumm, E., CHven, A. J., 1995. Miscibility, crystallization and melting of poly (3-hydroxy... [Pg.57]

The PBE dendron has a glass transition at about 40 °C and is soluble in various organic solvents (e.g., THF, acetone, toluene). It is therefore a moldable, thermoplastic, film-forming material. This practical feature is maintained for the lanthanide-cored dendrimer complexes. The complexes are partially miscible with poly(methyl methacrylate), affording transparent luminescence compositions by mixing in solvent. [Pg.201]

Blends of enzymatically synthesized poly(bisphenol-A) and poly(p-r-butylphenol) with poly(e-CL) were examined. FT-IR analysis showed the expected strong intermolecular hydrogen-bonding interaction between the phenolic polymer with poly(e-CL). A single 7 was observed for the blend, and the value increased as a function of the polymer content, indicating their good miscibility in the amorphous state. In the blend of enzymatically synthesized poly(4,4 -oxybisphenol) with poly(e-CL), both polymers were miscible in the amorphous phase also. The crystallinity of poly(e-CL) decreased by poly(4,4 -oxybisphenol). [Pg.238]

Figure 10.7 The phase diagram (a) and the glass transition temperatures (b) of a PSC/PVME mixture obtained, respectively, by light scattering and differential scanning calorimetry (DSC). Irradiation experiments were performed in the miscible region at 127 C indicated by (X) in the figure of trans-cinnamic acid-labeled polystyrene/poly(vinyl methyl ether) blends. Figure 10.7 The phase diagram (a) and the glass transition temperatures (b) of a PSC/PVME mixture obtained, respectively, by light scattering and differential scanning calorimetry (DSC). Irradiation experiments were performed in the miscible region at 127 C indicated by (X) in the figure of trans-cinnamic acid-labeled polystyrene/poly(vinyl methyl ether) blends.
Some preliminary results indicate that the functionalized polymers form miscible blends with poly(methyl methacry1 ate). [Pg.300]

Nanocapsules of biodegradable polymers, such as PLA and PLA copolymers or poly (e-caprolactone), have been prepared by an interfacial polymer deposition mechanism [163-166], An additional component, a water-immiscible oil, is added to the drug-polymer-solvent mixture. A solution of the polymer, the drug, and a water-immiscible oil in a water-miscible solvent such as acetone is added to an external... [Pg.275]

The anhydrous petrolatum base may be made more miscible with water through the use of an anhydrous liquid lanolin derivative. Drugs can be incorporated into such a base in aqueous solution if desired. Poly-oxyl 40 stearate and polyethylene glycol 300 are used in an anti-infective ointment to solubilize the active principle in the base so that the ointment can be sterilized by aseptic filtration. The cosmetic-type bases, such as the oil-in-water (o/w) emulsion bases popular in dermatology, should not be used in the eye, nor should liquid emulsions, owing to the ocular irritation produced by the soaps and surfactants used to form the emulsion. [Pg.462]

Likewise, poly (methyl methacrylate) and polyfvinylidene fluoride), the chemical structures of which are shown in Fig. 10.2, make a miscible blend because of the strong specific interactions between the oxygen atoms on the methacrylate and the fluoride group in the vinylidene fluoride group. [Pg.203]

The chemical features that prohibit crystallinity are main chain flexibility (e.g., rotation), branching, random copolymers or low inter-polymer chain attraction. Normally, polymers are not miscible with each other and on cooling from the melt will separate into different phases. When miscibility is exhibited, e.g., poly(phenylene oxide) (PPO) and PS, crystallisation does not take place. [Pg.71]

The closest physical realization of the system examined above would be a polymer such as poly(vinyl fluoride) doped into poly(ethylene) (observing the r resonance) or poly(trifluoroethylene) doped into poly(tetra-fluorethylene), observing H. Neither of these systems is likely to be sufficiently miscible, and there is the possibility of significant proportions of head-to-head linkages, which would dominate the experimental M2 because of the proximity of the spins on adjacent backbone atoms. [Pg.286]


See other pages where Poly , miscibility is mentioned: [Pg.329]    [Pg.154]    [Pg.432]    [Pg.308]    [Pg.149]    [Pg.409]    [Pg.411]    [Pg.411]    [Pg.415]    [Pg.469]    [Pg.57]    [Pg.520]    [Pg.327]    [Pg.56]    [Pg.56]    [Pg.589]    [Pg.633]    [Pg.381]    [Pg.345]    [Pg.388]    [Pg.200]    [Pg.233]    [Pg.85]    [Pg.204]   
See also in sourсe #XX -- [ Pg.220 , Pg.222 ]




SEARCH



Miscibility, poly molecular composites

Poly /polystyrene, miscibility

Poly Flory interaction parameter of miscible blends

Poly glass-forming miscible blends

Poly interaction energy density of miscible blends

© 2024 chempedia.info