Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene/poly , miscibility

Sulfonation has been used to change some characteristics of blends. Poly(2,6-diphenyl-l,4-phenylene oxide) and polystyrene are immiscible. However, when the polymers were functionalized by sulfonation, even though they remained immiscible when blended, the functionalization increased interfacial interactions and resulted in improved properties (65). In the case of DMPPO and poly(ethyl acrylate) the originally immiscible blends showed increased miscibility with sulfonation (66). [Pg.330]

Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ... Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ...
The GBR resin works well for nonionic and certain ionic polymers such as various native and derivatized starches, including sodium carboxymethylcel-lulose, methylcellulose, dextrans, carrageenans, hydroxypropyl methylcellu-lose, cellulose sulfate, and pullulans. GBR columns can be used in virtually any solvent or mixture of solvents from hexane to 1 M NaOH as long as they are miscible. Using sulfonated PDVB gels, mixtures of methanol and 0.1 M Na acetate will run many polar ionic-type polymers such as poly-2-acrylamido-2-methyl-l-propanesulfonic acid, polystyrene sulfonic acids, and poly aniline/ polystyrene sulfonic acid. Sulfonated columns can also be used with water glacial acetic acid mixtures, typically 90/10 (v/v). Polyacrylic acids run well on sulfonated gels in 0.2 M NaAc, pH 7.75. [Pg.400]

Figure 10.7 The phase diagram (a) and the glass transition temperatures (b) of a PSC/PVME mixture obtained, respectively, by light scattering and differential scanning calorimetry (DSC). Irradiation experiments were performed in the miscible region at 127 C indicated by (X) in the figure of trans-cinnamic acid-labeled polystyrene/poly(vinyl methyl ether) blends. Figure 10.7 The phase diagram (a) and the glass transition temperatures (b) of a PSC/PVME mixture obtained, respectively, by light scattering and differential scanning calorimetry (DSC). Irradiation experiments were performed in the miscible region at 127 C indicated by (X) in the figure of trans-cinnamic acid-labeled polystyrene/poly(vinyl methyl ether) blends.
Several attempts have been made to superimpose creep and stress-relaxation data obtained at different temperatures on styrcne-butadiene-styrene block polymers. Shen and Kaelble (258) found that Williams-Landel-Ferry (WLF) (27) shift factors held around each of the glass transition temperatures of the polystyrene and the poly butadiene, but at intermediate temperatures a different type of shift factor had to be used to make a master curve. However, on very similar block polymers, Lim et ai. (25 )) found that a WLF shift factor held only below 15°C in the region between the glass transitions, and at higher temperatures an Arrhenius type of shift factor held. The reason for this difference in the shift factors is not known. Master curves have been made from creep and stress-relaxation data on partially miscible graft polymers of poly(ethyl acrylate) and poly(mcthyl methacrylate) (260). WLF shift factors held approximately, but the master curves covered 20 to 25 decades of time rather than the 10 to 15 decades for normal one-phase polymers. [Pg.118]

The dielectric relaxation of bulk mixtures of poly(2jS-di-methylphenylene oxide) and atactic polystyrene has been measured as a function of sample composition, frequency, and temperature. The results are compared with earlier dynamic mechanical and (differential scanning) calorimetric studies of the same samples. It is concluded that the polymers are miscible but probably not at a segmental level. A detailed analysis suggests that the particular samples investigated may be considered in terms of a continuous phase-dispersed phase concept, in which the former is a PS-rich and the latter a PPO-rich material, except for the sample containing 75% PPO-25% PS in which the converse is postulated. [Pg.42]

Figure 8.12 TEM photographs of triblock copolymers dispersed in a DGEBA-diamine epoxy network. The triblock copolymer is polystyrene-b-polybuta-diene-b-poly(methyl methacrylate), and the epoxy hardener is (a) -methylene bis [3-chloro-2,6 diethylaniline], MCDEA, and (b) 4,4 -diamino diphenyl sulfone, DDS. In the case of the epoxy system based on MCDEA, the PMMA block is miscible up to the end of the epoxy reaction. In the case of the epoxy system based on DDS, the PMMA block phase-separates during reaction. (From LMM Library.)... [Pg.255]

Volume of Mixing. In general terms, exothermic interaction effects tend to diminish the volume of a mixture whereas entropic effects act in the opposite way. For miscible polymers, therefore, one expects a negative volume of mixing. This has been confirmed experimentally for different miscible polymers with LCST behavior, e.g. for miscible 50/50 blends of polystyrene and poly(2-chloro-styrene) the volume change AVM/V at 130°C has been reported to be about... [Pg.40]

Miscible Blends. Both Components Amorphous. Certainly one of the most commercially important and publicized examples of a miscible polymer blend system is that based on polystyrene and poly(phenylene oxide), which is sold under the trade name Noryl by General Electric. Many fundamental studies of this system have been published, many of which were devoted to proving that these two components are miscible in a thermodynamic sense (see chapter 5 of Ref. 10 by MacKnight, Karasz, and Fried). Commercial interest in this system involves both... [Pg.319]

Figure 1. Room-temperature miscibility diagrams for blends of polystyrene with poly(methyl methacrylate) and styrene/(methyl methacrylate) copolymers. Shaded area is compatible region. Figure 1. Room-temperature miscibility diagrams for blends of polystyrene with poly(methyl methacrylate) and styrene/(methyl methacrylate) copolymers. Shaded area is compatible region.
DiPaola-Baranyi, G. Richer, J. Prest, W. M., "Thermodynamic Miscibility of Polystyrene-Poly-(2,6-dimethyl- 1,4-phenylene oxide) Blends.," Can. J. Chem., 63, 223 (1985). [Pg.169]

Blends of polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) can be mixed in the melt as both polymers have reasonable thermal stability. There has however been much discussion as to whether the blends are truly one phase. Some techniques suggest homogeneity while others suggest a heterogeneous structure. On balance it appears that the two polymers are in fact thermodynamically miscible in all proportions but completely efficient mixing is difficult to achieve... [Pg.130]

This is responsible for the miscibility of various polyesters polyacrylates and vinyl acetate copolymers with PVC Another postulated interaction which has not been studied so much is that between ether groups and aromatic rings which may be responsible for the miscibility of polystyrene and poly(methyl vinyl ether). Interactions probably also exist between other groups and aromatic moeties. However, some interactions can at present only be inferred from favourable heats of mixing found for low molecular weight analogues without much being really understood at a molecular level. [Pg.152]


See other pages where Polystyrene/poly , miscibility is mentioned: [Pg.113]    [Pg.182]    [Pg.308]    [Pg.411]    [Pg.204]    [Pg.151]    [Pg.83]    [Pg.75]    [Pg.149]    [Pg.150]    [Pg.153]    [Pg.158]    [Pg.159]    [Pg.162]    [Pg.163]    [Pg.165]    [Pg.330]    [Pg.411]    [Pg.1081]    [Pg.218]    [Pg.27]    [Pg.122]    [Pg.350]    [Pg.315]    [Pg.433]    [Pg.550]    [Pg.28]    [Pg.188]    [Pg.143]    [Pg.143]    [Pg.143]    [Pg.303]    [Pg.307]    [Pg.309]    [Pg.403]   
See also in sourсe #XX -- [ Pg.221 , Pg.225 , Pg.226 , Pg.226 ]




SEARCH



Poly -polystyrene

Poly miscibility

© 2024 chempedia.info