Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly methyl film

Lenk T J, Hallmark V M, Rabolt J F, Haussling L and Ringsdorf H 1993 Formation and characterization of self-assembled films of sulphur-derivatized poly(methyl methacrylates) on gold Macromolecules 26 1230-7... [Pg.2641]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

Optics. Good optical properties and low thermal resistance make poly(methyl methacrylate) polymers well suited for use as plastic optical fibers. The manufacturing methods and optical properties of the fibers have been reviewed (124) (see Fiber optics). Methods for the preparation of Fresnel lenses and a Fresnel lens film have been reported (125,126). Compositions and methods for the industrial production of cast plastic eyeglass lenses are available (127). [Pg.271]

Fig. 4.55. Experimental and calculated (dashed line) RAIR-spectra for poly(methyl methacrylate) films 3270 + 100 nm, 362 30 nm, and 78 + 15 nm thick (a) p-polarized light incident at 60° (b) s-polarized light incident at 60°, after [4.266]. Fig. 4.55. Experimental and calculated (dashed line) RAIR-spectra for poly(methyl methacrylate) films 3270 + 100 nm, 362 30 nm, and 78 + 15 nm thick (a) p-polarized light incident at 60° (b) s-polarized light incident at 60°, after [4.266].
FIGURE 20.10 (a,b) Phase images of cryo-ultramicrotomed surfaces of triblock copolymer styrene and ethylene-butylene (SEES) samples of neat material and loaded with oil (40 wt%), respectively. (c,d) Phase images of film of triblock copolymer poly(methyl methacrylate-polyisobutylene-poly(methyl methacrylate) (PMMA-PIB-PMMA) immediately after spin-casting and after 3 h annealing at 100°C, respectively. Inserts in the top left and right comers of the images show power spectra with the value stmctural parameter of microphase separation. [Pg.568]

The PBE dendron has a glass transition at about 40 °C and is soluble in various organic solvents (e.g., THF, acetone, toluene). It is therefore a moldable, thermoplastic, film-forming material. This practical feature is maintained for the lanthanide-cored dendrimer complexes. The complexes are partially miscible with poly(methyl methacrylate), affording transparent luminescence compositions by mixing in solvent. [Pg.201]

Aoki, H., Morita, S., Sekine, R. and Ito, S. (2008) Conformation of single poly(methyl methacrylate) chains in ultra-thin film studied by scanning near-field optical microscopy. Polym. J 40, 274-280. [Pg.69]

Agari, Y, Shimada, M., Ueda, A. and Nagai, S. (1996) Preparation, characterization and properties of gradient polymer blends discussion of poly(vinyl chloride)/poly (methyl methacrylate) blend films containing a wide compositional gradient phase. Macromol. Chem. Phys., 197, 2017-2033. [Pg.185]

Gong, Y., Huang, H., Hu, Z., Chen, Y, Chen, D Wang, Z. and He, X. (2006) Inverted to normal phase transition in solution-cast polystyrene-poly(methyl methacrylate) block copolymer thin films. Macromolecules, 39, 3369-3376. [Pg.223]

Fukumura, H., Takahashi, E.-I. and Masuhara, H. (1995) Time-resolved spectroscopic and photographic studies on laser ablation of poly(methyl methacrylate) film doped with biphenyl. J. Phys. Chem., 99, 750-757. [Pg.224]

Figure 7 shows the quadratic Stark spectrum of a poly(methyl metacrylate) film doped with a azobenzene-linked amphiphile, 4-octadecyloxy-4 -nitroazobenzene. Using eq. (5) and the most characteristic spectral point on the AT/T curves, where dD/dX = 0 and d2D/dXa = 0, the value of Ap was evaluated to be 5.4 debye. Further, the p value of the azobenzene-linked amphiphile was calculated to be 24 x 10 30 esu at a fundamental wavelength of 1064 nm. The p values of azobenzene-linked amphiphiles employed in this study were evaluated by the procedure mentioned here. The values are listed in Table 2 in the section 1.1.1. [Pg.307]

TiCU readily functionalizes hydrophilic polymers such as poly(vinyl alcohol), m-ciesol novolac and methacrylic acid copolymers as well as moderately hydrophobic polymers such as poly(methyl methacrylate), poly(vinyl acetate), poly(benzyl methacrylate) and fully acetylated m-cresol novolac. HCI4 did not react with poly(styrene) to form etch resistant films indicating that very hydrophobic films follow a different reaction pathway. RBS analysis revealed that Ti is present only on the surface of hydrophilic and moderately hydrophobic polymer films, whereas it was found diffused through the entire thickness of the poly(styrene) films. The reaction pathways of hydrophilic and hydrophobic polymers with HCI4 are different because TiCl is hydrolysed by the surface water at the hydrophilic polymer surfaces to form an etch resistant T1O2 layer. Lack of such surface water in hydrophobic polymers explains the absence of a surface TiC>2 layer and the poor etching selectivities. [Pg.208]

The factor f reduces the oscillation amplitude symmetrically about R - R0, facilitating straightforward calculation of polymer refractive index from quantities measured directly from the waveform (3,). When r12 is not small, as in the plasma etching of thin polymer films, the first order power series approximation is inadequate. For example, for a plasma/poly(methyl-methacrylate)/silicon system, r12 = -0.196 and r23 = -0.442. The waveform for a uniformly etching film is no longer purely sinusoidal in time but contains other harmonic components. In addition, amplitude reduction through the f factor does not preserve the vertical median R0 making the film refractive index calculation non-trivial. [Pg.237]

Poly(methyl methacrylate) [PMMA] is an excellent polymer for studying photoresist dissolution because of its minimal swelling characteristic. For this work, PMMA molecules were labelled with phenanthrene (Phe) dye since its fluorescence is quenched by MEK. In addition, this dye has the advantage of forming few excimers (23-241 which results in self-quenching. Thus, the reduction in fluorescence intensity of PMMA-Phe is virtually solely due to MEK quenching. Consequently, the permeation of MEK into a PMMA film can be monitored from fluorescence intensity decay. [Pg.387]

A. Itaya, T. Yamada, K. Tokuda, and H. Masuhara, Interfacial characteristics of poly(methyl methacrylate) film Aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy, Polym. J. 22, 697-704 (1990). [Pg.341]

Poly(methyl methacrylate) (PMMA) is a classical one-component, positive resist system. PMMA is a single, homogeneous material that combines the properties of excellent film-forming characteristics, resistance to chemical etchants and intrinsic radiation sensitivity. [Pg.91]


See other pages where Poly methyl film is mentioned: [Pg.540]    [Pg.2629]    [Pg.207]    [Pg.377]    [Pg.260]    [Pg.228]    [Pg.350]    [Pg.396]    [Pg.189]    [Pg.252]    [Pg.21]    [Pg.568]    [Pg.108]    [Pg.81]    [Pg.267]    [Pg.404]    [Pg.102]    [Pg.7]    [Pg.373]    [Pg.579]    [Pg.609]    [Pg.325]    [Pg.89]    [Pg.122]    [Pg.142]    [Pg.294]    [Pg.31]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Poly films

Poly(methyl

© 2024 chempedia.info