Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , melt

Cakmak M, Teitge A, Zachman FI G and White J L 1993 On-line small-angle and wide-angle x-ray scattering studies on melt-spinning poly(vinylidene fluoride) tape using synchrotron radiation J. Polym. Sc/. 31 371- 81... [Pg.2539]

Poly(vinyl acetate) is used in latex water paints because of its weathering, quick-drying, recoat-ability, and self-priming properties. It is also used in hot-melt and solution adhesives. [Pg.1025]

Figure 4.2 illustrates some of these points for poly(1,4-cis-isoprene). The temperature at which the crystals are formed is shown along the abscissa, and the temperature at which they melt, along the ordinate. Note the following observations ... [Pg.204]

Figure 4.2 Melting temperature of crystals versus temperature of crystallization for poly( 1,4-cis-isoprene). Note the temperature range over which melting occurs. [Reprinted with permission from L. A. Wood and N. Bekkedahl, J. Appl. Phys. 17 362 (1946).]... Figure 4.2 Melting temperature of crystals versus temperature of crystallization for poly( 1,4-cis-isoprene). Note the temperature range over which melting occurs. [Reprinted with permission from L. A. Wood and N. Bekkedahl, J. Appl. Phys. 17 362 (1946).]...
The melting points of a series of poly(a-olefin) crystals were studied. All of the polymers were isotactic and had chain substituents of different bulkinesses. Table 4.2 lists some results. Use Eq. (4.5) as the basis for interpreting the trends in these data. [Pg.209]

The many commercially attractive properties of acetal resins are due in large part to the inherent high crystallinity of the base polymers. Values reported for percentage crystallinity (x ray, density) range from 60 to 77%. The lower values are typical of copolymer. Poly oxymethylene most commonly crystallizes in a hexagonal unit cell (9) with the polymer chains in a 9/5 helix (10,11). An orthorhombic unit cell has also been reported (9). The oxyethylene units in copolymers of trioxane and ethylene oxide can be incorporated in the crystal lattice (12). The nominal value of the melting point of homopolymer is 175°C, that of the copolymer is 165°C. Other thermal properties, which depend substantially on the crystallization or melting of the polymer, are Hsted in Table 1. See also reference 13. [Pg.56]

However, because of the low melting poiats and poor hydrolytic stabiUty of polyesters from available iatermediates, Carothers shifted his attention to linear ahphatic polyamides and created nylon as the first commercial synthetic fiber. It was nearly 10 years before. R. Whinfield and J. T. Dickson were to discover the merits of poly(ethylene terephthalate) [25038-59-9] (PET) made from aromatic terephthaUc acid [100-21-0] (TA) and ethylene glycol [107-21-1] (2G). [Pg.325]

This phosphinic anhydride [15171 -48-9] C H O P, is then reacted with glycol and other precursors of poly(ethylene terephthalate), to produce a flame-retardant polyester [82690-14-0] having phosphinate units of the stmcture —0P(0)(CH2)CH2CH2C00—. Trevira 271 is useflil for children s sleepwear, work clothing, and home flirnishings. A phosphoms content as low as 0.6% is reported to be sufficient for draperies and upholstery tests if melt-drip is not retarded by print pigments or the presence of nonthermoplastic fibers (28). [Pg.480]

The equimolar copolymer of ethylene and tetrafluoroethylene is isomeric with poly(vinyhdene fluoride) but has a higher melting point (16,17) and a lower dielectric loss (18,19) (see Fluorine compounds, organic-poly(VINYLIDENE fluoride)). A copolymer with the degree of alternation of about 0.88 was used to study the stmcture (20). Its unit cell was determined by x-ray diffraction. Despite irregularities in the chain stmcture and low crystallinity, a unit cell and stmcture was derived that gave a calculated crystalline density of 1.9 g/cm. The unit cell is befleved to be orthorhombic or monoclinic (a = 0.96 nm, b = 0.925 nm, c = 0.50 nm 7 = 96%. [Pg.365]

Extmsion processes have been used to produce high and low density flexible cellular poly(vinyl chloride). A decomposable blowiag ageat is usually bleaded with the compouad prior to extmsioa. The compouaded resia is thea fed to an extmder where it is melted under pressure and forced out of an orifice iato the atmosphere. After extmsion iato the desired shape, the cellular material is cooled to stabili2e it and is removed by a belt. [Pg.407]

In 1975, the synthesis of the first main-chain thermotropic polymers, three polyesters of 4,4 -dihydroxy-a,a -dimethylbenzalazine with 6, 8, and 10 methylene groups in the aHphatic chain, was reported (2). Shortly thereafter, at the Tennessee Eastman Co. thermotropic polyesters were synthesized by the acidolysis of poly(ethylene terephthalate) by/ -acetoxybenzoic acid (3). Copolymer compositions that contained 40—70 mol % of the oxybenzoyl unit formed anisotropic, turbid melts which were easily oriented. [Pg.64]

Industrial Thermotropic LGPs. Vectran, poly(6-hydroxy-2-naphthoic acid- o-4-hydroxybenzoic acid) [81843-52-9] is currendy the only thermotropic fiber which is commercially available (13). Vectran is synthesized by the melt acidolysis of/ -acetoxybenzoic acid and 6-acetoxy-2-naphthoic acid. [Pg.67]

Melting transition for poly(dimethylsiloxane) graft segment. [Pg.260]

Examples of polymers which form anisotropic polymer melts iaclude petroleum pitches, polyesters, polyethers, polyphosphaziaes, a-poly- -xyljlene, and polysdoxanes. Synthesis goals iaclude the iacorporation of a Hquid crystal-like entity iato the maia chaia of the polymer to iacrease the strength and thermal stabiHty of the materials that are formed from the Hquid crystal precursor, the locking ia of Hquid crystalline properties of the fluid iato the soHd phase, and the production of extended chain polymers that are soluble ia organic solvents rather than sulfuric acid. [Pg.201]

HoUow-fiber fabrication methods can be divided into two classes (61). The most common is solution spinning, in which a 20—30% polymer solution is extmded and precipitated into a bath of a nonsolvent, generally water. Solution spinning allows fibers with the asymmetric Loeb-Soufirajan stmcture to be made. An alternative technique is melt spinning, in which a hot polymer melt is extmded from an appropriate die and is then cooled and sohdified in air or a quench tank. Melt-spun fibers are usually relatively dense and have lower fluxes than solution-spun fibers, but because the fiber can be stretched after it leaves the die, very fine fibers can be made. Melt spinning can also be used with polymers such as poly(trimethylpentene), which are not soluble in convenient solvents and are difficult to form by wet spinning. [Pg.71]

Short segments of poly(dG—dC) incorporated within plasmids, or citcular DNA, adopt the Z-conformation under negative superhehcal stress. This left-handed DNA may be important in genetic control. On the other hand, the stmctural alteration of the helix requited in a B-to-Z transition within a plasmid is radical, and would involve either a multistep mechanism or the complete melting and reformation of helix. The improbability of such transitions has led to questions concerning the feasibility of a biological role for Z-DNA. [Pg.250]

Attempts have been made to use cold-set adhesives in the cormgating operation, such as poly(vinyl acetate) and modified, precooked starch formulations, but these have not achieved any appreciable degree of commercial acceptance (20). The use of a polyethylene film appHed to the inside surface of the linerboard facing, which serves as a hot-melt cormgator adhesive, has achieved some commercial usage. However, its use is limited to the small, specialty product niche of fast-food hamburger cartons (see Olefin polymers, polyethylene). [Pg.518]

Poly(viayl acetate) emulsions or hot-melt adhesives are typically used to form the manufacturer s or glue lap joiat of the box. The main criteria for the adhesive is that it provide a strong and tough final bond and that it set up quickly enough to allow fast box production speeds. Production rates ia excess of 240 boxes per minute are not uncommon ia the iadustry. [Pg.519]

The adhesives (qv) used to form tube seams and bag bottoms include unborated dextrin, borated dextrin, casein, latex—casein, latex, poly(vinyl acetate), vinyl acetate copolymers, and hot-melt materials (10,27). Dextrin and casein adhesives are more commonly used in the production of grocery sacks vinyl acetate-type adhesives are commonly used in ah paper multiwah bags. The hot-melt adhesives are typicahy used to tack the phes of the multiwah bag together and to form the seam and bottom joints when polymer film phes or coated paper phes are used in bag constmction. [Pg.519]

The seam closure on a folding carton is typicahy made using a latex, poly(vinyl acetate), vinyl acetate copolymer, or hot-melt adhesive (27). The choice of adhesive depends on a number of factors, including the nature of any coating used on the package and the production speeds required. [Pg.519]


See other pages where Poly , melt is mentioned: [Pg.228]    [Pg.228]    [Pg.70]    [Pg.2270]    [Pg.271]    [Pg.234]    [Pg.263]    [Pg.230]    [Pg.230]    [Pg.378]    [Pg.172]    [Pg.236]    [Pg.327]    [Pg.273]    [Pg.361]    [Pg.379]    [Pg.374]    [Pg.535]    [Pg.64]    [Pg.64]    [Pg.68]    [Pg.149]    [Pg.150]    [Pg.154]    [Pg.459]    [Pg.225]    [Pg.335]    [Pg.63]    [Pg.265]    [Pg.427]    [Pg.429]    [Pg.233]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



© 2024 chempedia.info