Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , hydrolytically

Under conditions of extreme acidity or alkalinity, acryhc ester polymers can be made to hydroly2e to poly(acryhc acid) or an acid salt and the corresponding alcohol. However, acryhc polymers and copolymers have a greater resistance to both acidic and alkaline hydrolysis than competitive poly(vinyl acetate) and vinyl acetate copolymers. Even poly(methyl acrylate), the most readily hydroly2ed polymer of the series, is more resistant to alkah than poly(vinyl acetate) (57). Butyl acrylate copolymers are more hydrolytically stable than ethyl acrylate copolymers (58). [Pg.164]

However, because of the low melting poiats and poor hydrolytic stabiUty of polyesters from available iatermediates, Carothers shifted his attention to linear ahphatic polyamides and created nylon as the first commercial synthetic fiber. It was nearly 10 years before. R. Whinfield and J. T. Dickson were to discover the merits of poly(ethylene terephthalate) [25038-59-9] (PET) made from aromatic terephthaUc acid [100-21-0] (TA) and ethylene glycol [107-21-1] (2G). [Pg.325]

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

In addition, polyester polyols are made by the reaction of caprolactone with diols. Poly(caprolactone diols) are used in the manufacture of thermoplastic polyurethane elastomers with improved hydrolytic stabiHty (22). The hydrolytic stabiHty of the poly(caprolactone diol)-derived TPUs is comparable to TPUs based on the more expensive long-chain diol adipates (23). Polyether/polyester polyol hybrids are synthesized from low molecular weight polyester diols, which are extended with propylene oxide. [Pg.347]

Ionic polymers are also formulated from TDI and MDI (43). Poly(urethane urea) and polyurea ionomers are obtained from divalent metal salts of /)-aminohen2oic acid, MPA, dialkylene glycol, and 2,4-TDI (44). In the case of polyureas, the glycol extender is omitted. If TDI is used in coatings apphcations, it is usually converted to a derivative to lower the vapor pressure. A typical TDI prepolymer is the adduct of TDI with trimethyl olpropane (Desmodur L). Carbodiimide-modified MDI offers advantages in polyester-based systems because of improved hydrolytic stabihty (45). Moisture cure systems based on aromatic isocyanates are also available. [Pg.350]

Poly(A/-vinyl-2-pyrrohdinone) (PVP) is undoubtedly the best-characterized and most widely studied A/-vinyl polymer. It derives its commercial success from its biological compatibiUty, low toxicity, film-forming and adhesive characteristics, unusual complexing abiUty, relatively inert behavior toward salts and acids, and thermal and hydrolytic stabiUty. [Pg.527]

In order to become useful dmg delivery devices, biodegradable polymers must be formable into desired shapes of appropriate size, have adequate dimensional stability and appropriate strength-loss characteristics, be completely biodegradable, and be sterilizahle (70). The polymers most often studied for biodegradable dmg delivery applications are carboxylic acid derivatives such as polyamides poly(a-hydroxy acids) such as poly(lactic acid) [26100-51-6] and poly(glycolic acid) [26124-68-5], cross-linked polyesters poly(orthoesters) poly anhydrides and poly(alkyl 2-cyanoacrylates). The relative stabiUty of hydrolytically labile linkages ia these polymers (70) is as follows ... [Pg.143]

Polymeric Membranes Economically important applications required membranes that could operate at higher pH than could CA, for which the optimum is around pH = 5. Many polymeric membranes are now available, most of which have excellent hydrolytic stabihty. Particularly prominent are polysulfone, polyvinyhdene fluoride, poly-ethersulfone, polyvinyl alcohol-polyethylene copolymers, and aciylic copolymers. [Pg.2038]

The resulting poly(cw-syndiotactic-phenylsilsesquioxanes) are claimed to have equal thermal stability to conventional silicones but with markedly improved hydrolytic stability. [Pg.848]

As previously mentioned, some urethanes can biodegrade easily by hydrolysis, while others are very resistant to hydrolysis. The purpose of this section is to provide some guidelines to aid the scientist in designing the desired hydrolytic stability of the urethane adhesive. For hydrolysis of a urethane to occur, water must diffuse into the bulk polymer, followed by hydrolysis of the weak link within the urethane adhesive. The two most common sites of attack are the urethane soft segment (polyol) and/or the urethane linkages. Urethanes made from PPG polyols, PTMEG, and poly(butadiene) polyols all have a backbone inherently resistant to hydrolysis. They are usually the first choice for adhesives that will be exposed to moisture. Polyester polyols and polycarbonates may be prone to hydrolytic attack, but this problem can be controlled to some degree by the proper choice of polyol. [Pg.806]

Poly(L-malate) decomposes spontaneously to L-ma-late by ester hydrolysis [2,4,5]. Hydrolytic degradation of the polymer sodium salt at pH 7.0 and 37°C results in a random cleavage of the polymer, the molecular mass decreasing by 50% after a period of 10 h [2]. The rate of hydrolysis is accelerated in acidic and alkaline solutions. This was first noted by changes in the activity of the polymer to inhibit DNA polymerase a of P. polycephalum [4]. The explanation of this phenomenon was that the degradation was slowest between pH 5-9 (Fig. 2) as would be expected if it were acid/base-catalyzed. In choosing a buffer, one should be aware of specific buffer catalysis. We found that the polymer was more stable in phosphate buffer than in Tris/HCl-buffer. [Pg.100]

It is also possible to prepare them from amino acids by the self-condensation reaction (3.12). The PAs (AABB) can be prepared from diamines and diacids by hydrolytic polymerization [see (3.12)]. The polyamides can also be prepared from other starting materials, such as esters, acid chlorides, isocyanates, silylated amines, and nitrils. The reactive acid chlorides are employed in the synthesis of wholly aromatic polyamides, such as poly(p-phenyleneterephthalamide) in (3.4). The molecular weight distribution (Mw/Mn) of these polymers follows the classical theory of molecular weight distribution and is nearly always in the region of 2. In some cases, such as PA-6,6, chain branching can take place and then the Mw/Mn ratio is higher. [Pg.150]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

Synthesis of hydrolytically stable siloxane-urethanes by the melt reaction of organo-hydroxy terminated siloxane oligomers with various diisocyanates have been reported i97,i98) -yhg polymers obtained by this route are reported to be soluble in cresol and displayed rubber-like properties. However the molecular weights obtained were not very high. A later report56) described the use of hydroxybutyl terminated disiloxanes in the synthesis of poly(urethane-siloxanes). No data on the characterization of the copolymers have been given. However, from our independent kinetic and synthetic studies on the same system 199), unfortunately, it is clear that these types of materials do not result in well defined multiphase copolymers. The use of low molecular weight hydroxypropyl-terminated siloxanes in the synthesis of siloxane-urethane type structures has also been reported 198). [Pg.40]

Siloxane containing interpenetrating networks (IPN) have also been synthesized and some properties were reported 59,354 356>. However, they have not received much attention. Preparation and characterization of IPNs based on PDMS-polystyrene 354), PDMS-poly(methyl methacrylate) 354), polysiloxane-epoxy systems 355) and PDMS-polyurethane 356) were described. These materials all displayed two-phase morphologies, but only minor improvements were obtained over the physical and mechanical properties of the parent materials. This may be due to the difficulties encountered in controlling the structure and morphology of these IPN systems. Siloxane modified polyamide, polyester, polyolefin and various polyurethane based IPN materials are commercially available 59). Incorporation of siloxanes into these systems was reported to increase the hydrolytic stability, surface release, electrical properties of the base polymers and also to reduce the surface wear and friction due to the lubricating action of PDMS chains 59). [Pg.62]

FIGURE 22 Semilog plot of the in vitro rate of hydrolytic chain scission of PCL, poly glycolic acid-co-lactic acid, and a 1 1 blend of the two polymers, demonstrating the use of blends to modify degradation rates. (From Refs. 64 and 65.)... [Pg.106]

Thus, while these two polymers differ greatly in their rate of hydrolytic chain cleavage, gel permeation chromatography (GPC) analysis of a 1 1 blend of PCL and poly(glycolic acid-co-lactic acid) in pH 7.4 buffer showed that both components of the blend were subject to the same rate of chain cleavage (65). [Pg.108]

Even though poly(ortho esters) contain hydrolytically labile Linkages, they are highly hydrophobic materiads and for this reason are very stable and can be stored without careful exclusion of moisture. However, the ortho ester linkage in the polymer is inherently thermally unstable and at elevated temperatures is believed to dissociate into an alcohol and a ketene acetal (33). A possible mechanism for the thermal degradation is shown below. This thermal degradation is similar to that observed with polyurethanes (34). [Pg.150]

Poly (iminocarbonates) are little known polymers that, in a formal sense, are derived from polycarbonates by the replacement of the carbonyl oxygen by an imino group (Fig. 5). This backbone modification dramatically increases the hydrolytic lability of the backbone, without appreciably affecting the physicomechanical properties of the polymer the mechanical strength and toughness of thin,... [Pg.212]

Perhaps the most interesting finding of our synthetic studies was that the interfacial preparation of poly(iminocarbonates) is possible in spite of the pronounced hydrolytic instability of the cyanate moiety (see Illustrative Procedure 3). Hydrolysis of the chemically reactive monomer is usually a highly undesirable side reaction during interfacial polymerizations. During the preparation of nylons, for example, the hydrolysis of the acid chloride component to an inert carboxylic acid represents a wasteful loss. [Pg.217]


See other pages where Poly , hydrolytically is mentioned: [Pg.374]    [Pg.72]    [Pg.348]    [Pg.368]    [Pg.399]    [Pg.404]    [Pg.472]    [Pg.190]    [Pg.191]    [Pg.191]    [Pg.192]    [Pg.341]    [Pg.350]    [Pg.463]    [Pg.271]    [Pg.94]    [Pg.98]    [Pg.907]    [Pg.43]    [Pg.212]    [Pg.318]    [Pg.359]    [Pg.11]    [Pg.37]    [Pg.126]    [Pg.241]    [Pg.181]    [Pg.18]    [Pg.227]    [Pg.104]    [Pg.239]   


SEARCH



Hydrolytic

Hydrolytically labile poly

Poly abiotic-hydrolytic degradation

Poly hydrolytic degradation

Poly hydrolytically degraded

Poly molecular hydrolytic

© 2024 chempedia.info