Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly 0 8 ethyl

Mechanical and Thermal Properties. The first member of the acrylate series, poly(methyl acrylate), has fltde or no tack at room temperature it is a tough, mbbery, and moderately hard polymer. Poly(ethyl acrylate) is more mbberflke, considerably softer, and more extensible. Poly(butyl acrylate) is softer stiU, and much tackier. This information is quantitatively summarized in Table 2 (41). In the alkyl acrylate series, the softness increases through n-octy acrylate. As the chain length is increased beyond n-octy side-chain crystallization occurs and the materials become brittle (42) poly( -hexadecyl acrylate) is hard and waxlike at room temperature but is soft and tacky above its softening point. [Pg.163]

Table 10. Chain-Transfer Constants to Common Solvents for Poly(ethyl acrylate) ... Table 10. Chain-Transfer Constants to Common Solvents for Poly(ethyl acrylate) ...
Sulfonation has been used to change some characteristics of blends. Poly(2,6-diphenyl-l,4-phenylene oxide) and polystyrene are immiscible. However, when the polymers were functionalized by sulfonation, even though they remained immiscible when blended, the functionalization increased interfacial interactions and resulted in improved properties (65). In the case of DMPPO and poly(ethyl acrylate) the originally immiscible blends showed increased miscibility with sulfonation (66). [Pg.330]

Poly(ethyl methacrylate) (PEMA) yields truly compatible blends with poly(vinyl acetate) up to 20% PEMA concentration (133). Synergistic improvement in material properties was observed. Poly(ethylene oxide) forms compatible homogeneous blends with poly(vinyl acetate) (134). The T of the blends and the crystaUizabiUty of the PEO depend on the composition. The miscibility window of poly(vinyl acetate) and its copolymers with alkyl acrylates can be broadened through the incorporation of acryUc acid as a third component (135). A description of compatible and incompatible blends of poly(vinyl acetate) and other copolymers has been compiled (136). Blends of poly(vinyl acetate) copolymers with urethanes can provide improved heat resistance to the product providing reduced creep rates in adhesives used for vinyl laminating (137). [Pg.467]

The alcohol swells the poly (ethyl methacrylate) beads, rapidly promoting diffusion of the plasticizer into the polymer. As a result of the polymer-chain entanglement, a gel is formed. The conditioner is applied to the denture and provides a cushioning effect alcohol and plasticizer are slowly leached out, and the material becomes rigid. To ensure resiliency, the conditioner must be replaced after a few days. Some materials exhibit high flow over a short period compared with others with low initial flow the latter remain active longer. [Pg.490]

The earliest study describing vulcanised polymers of esters of acryUc acid was carried out in Germany by Rohm (2) before World War I. The first commercial acryUc elastomers were produced in the United States in the 1940s (3—5). They were homopolymers and copolymers of ethyl acrylate and other alkyl acrylates, with a preference for poly(ethyl acrylate) [9003-32-17, due to its superior balance of properties. The main drawback of these products was the vulcanisation. The fully saturated chemical stmcture of the polymeric backbone in fact is inactive toward the classical accelerators and curing systems. As a consequence they requited the use of aggressive and not versatile compounds such as strong bases, eg, sodium metasiUcate pentahydrate. To overcome this limitation, monomers containing a reactive moiety were incorporated in the polymer backbone by copolymerisation with the usual alkyl acrylates. [Pg.474]

These pioneer studies laid dormant until 1977 and, influenced by Kondo and colleagues [59] reports on the synthesis of po]y(vinylsulfonium yiide) with a trivaient sulfur attached directly to the polymer chain, poly[ethyl-vinylsulfonium bis-(methoxycarbonyl) methylide] (Scheme 25) was prepared by irradiation of a benzene... [Pg.378]

The structure-property relationship of graft copolymers based on an elastomeric backbone poly(ethyl acry-late)-g-polystyrene was studied by Peiffer and Rabeony [321. The copolymer was prepared by the free radical polymerization technique and, it was found that the improvement in properties depends upon factors such as the number of grafts/chain, graft molecular weight, etc. It was shown that mutually grafted copolymers produce a variety of compatibilized ternary component blends. [Pg.641]

Caglioti et al.201 suggested a mechanism for the action of hexachlorocydotriphos-photriazene in the polyesterification of carboxylic acids with phenols. Higashi291 catalyzed the reaction of various aromatic acids and alcohols by poly(ethyl phosphate). Both Caglioti201 and Higashi291 studied the influence of tertiary amines on the reactivity. [Pg.92]

Since this pioneering work a number of IPNs have been prepared. Poly(styrene) has been used as the second network polymer in conjunction with several other polymers, including poly(ethyl acrylate), poly(n-butyl acrylate), styrene-butadiene, and castor oil. Polyurethanes have been used to form IPNs with poly(methyl methacrylate), other acrylic polymers, and with epoxy resins. [Pg.154]

Chattopadhyay S., Chaki T.K., and Bhowmick A.K., New thermoplastic elastomers from poly(ethyle-neoctene) (engage), poly(ethylene-vinyl acetate) and low-density polyethylene by electron beam technology structural characterization and mechanical properties. Rubber Chem. TechnoL, 74, 815, 2001. Roy Choudhury N. and Dutta N.K., Thermoplastic elastomeric natural rubber-polypropylene blends with reference to interaction between the components. Advances in Polymer Blends and Alloys Technology, Vol. 5 (K. Finlayson, ed.), Technomic Publishers, Pensylvania, 1994, 161. [Pg.156]

Smith P. and Eisenberg A., lonomeric blends. I. Compatibilization of the polystyrene-poly(ethyl acrylate) system via ionic interactions, J. Polym. Sci., Polym Lett., 21, 223, 1983. [Pg.163]

Hyperbranched poly(ethyl methacrylate)s prepared by the photo-initiated radical polymerization of the inimer 13 were characterized by GPC with a lightscattering detector [51]. The hydrodynamic volume and radius of gyration (i g) of the resulting hyperbranched polymers were determined by DLS and SAXS, respectively. The ratios of Rg/R are in the range of 0.75-0.84, which are comparable to the value of hard spheres (0.775) and significantly lower than that of the linear unperturbed polymer coils (1.25-1.37). The compact nature of the hyperbranched poly(ethyl methacrylate)s is demonstrated by solution properties which are different from those of the linear analogs. [Pg.17]

Branched polyelectrolytes have become of special interest because of their industrial importance and scientifically interesting properties. Poly(ethyl-eneimine), which is important in various industrial applications, can provide an excellent example branched and linear polyelectrolytes have quite different properties due to both their different topographies and structures [89-91]. As another practical point, branched polyelectrolytes can act as precursor or fragments of polyelectrolyte gels. A variety of theoretical approaches have been reported on the investigations of branched polyelectrolytes [92-97]. However,... [Pg.20]

IPS Impact polystyrene PEMA Poly(ethyl methacrylate)... [Pg.762]

Equation (23) was found to be obeyed by a number of systems such as poly(ethyl acrylate)-benzene, rubber-benzene, and poly(methyl acrylate)-ethyl acetate [12], According to the equation, a plot of [In(DT/D0)] l versus ([)[ will yield a straight line, and from its slope the free volume parameter p can be determined. To construct this plot,/( / , 0) is first calculated as [27]... [Pg.468]

Experimental determinations of the contributions above those predicted by the reference phantom network model have been controversial. Experiments of Rennar and Oppermann [45] on end-linked PDMS networks, indicate that contributions from trapped entanglements are significant for low degrees of endlinking but are not important when the network chains are shorter. Experimental results of Erman et al. [46] on randomly cross-linked poly(ethyl acrylate)... [Pg.350]


See other pages where Poly 0 8 ethyl is mentioned: [Pg.1071]    [Pg.188]    [Pg.782]    [Pg.782]    [Pg.784]    [Pg.784]    [Pg.784]    [Pg.167]    [Pg.28]    [Pg.259]    [Pg.412]    [Pg.412]    [Pg.228]    [Pg.517]    [Pg.141]    [Pg.474]    [Pg.82]    [Pg.82]    [Pg.163]    [Pg.378]    [Pg.13]    [Pg.13]    [Pg.166]    [Pg.303]    [Pg.93]    [Pg.190]    [Pg.170]    [Pg.16]    [Pg.138]    [Pg.140]    [Pg.147]    [Pg.147]   


SEARCH



Graft copolymers poly ethyl

Graft poly /ethyl methacrylate

Graft poly ethyl

PNIPAM- poly[ ethyl

Poly [diethyl 2- ethyl

Poly ethyl acrylate

Poly ethyl ester

Poly ethyl ether ketone

Poly ethyl group substitution

Poly ethyl methacrylate (PDMAEMA

Poly ethyl methacrylate] block

Poly ethyl methacrylate] block copolymers

Poly ethyl trimethyl

Poly(2-Ethyl-2-Oxazoline)

Poly(ethyl acrylate co-methyl

Poly(ethyl acrylate), PEA

Poly(ethyl acrylate)bentonite nanocomposites

Poly(ethyl methacrylate), PEMA

Poly-0-ethyl-0-lactone

Poly-y-ethyl-L-glutamate

Poly[ ethyl methacrylate

Poly[2- ethyl preparation

Poly[2- ethyl vinyl ether

Polystyrene with poly(2-ethyl

Styrene capped poly[2- ethyl

Styrene, graft copolymers with poly ethyl

© 2024 chempedia.info