Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Graft poly /ethyl methacrylate

Yoshikawa, M. and Kitao, T. 1997. Speciality of polymeric membranes-VI. Pervaporation separation of benzene/cyclohexane mixtures through nylon 6-graft-poly(ethyl methacrylate) membranes. 33 25-31. [Pg.330]

Some two stage emulsion graft copolymer materials synthesized and characterized by DMS include) the series poly (methyl methacrylate)/poly(n-butyl acrylate) (PMMA/ PnBA) synthesized by Dickie (14) and the series poly(ethyl methacrylate)/poly(n-butyl acrylate) (PEMA/PnBA) synthesized by Sperling et al. (1) The present study will continue the development of the PEMA/PnBA damping materials by incorporating a common comonomer) ethyl acrylate (EA)) in both stages of the emulsion polymerization. [Pg.308]

Pan, Q., et al. (1999). Synthesis and characterization of block-graft copolymers composed of poly(styrene-b-ethylene-co-propylene) and poly(ethyl methacrylate) by atom transfer radical pol5merization. J. Polym. ScL, Part A Polym. Chem., 57(15) 2699-2702. [Pg.939]

Fig. 9. A dry-mix grafting feasibility diagram obtained from the solubility parameter difference A between polymer and NR and Tg or Tm of the polymer where PEflA = poly(ethyl-methacrylate), PUC.= poly(vinylchloride), PCL = poly (caprolactone), PS = polystyrene, PFlflA = poly (methylmethacrylate), Pa-flS = poly (a-methylstyrene),... Fig. 9. A dry-mix grafting feasibility diagram obtained from the solubility parameter difference A between polymer and NR and Tg or Tm of the polymer where PEflA = poly(ethyl-methacrylate), PUC.= poly(vinylchloride), PCL = poly (caprolactone), PS = polystyrene, PFlflA = poly (methylmethacrylate), Pa-flS = poly (a-methylstyrene),...
Several attempts have been made to superimpose creep and stress-relaxation data obtained at different temperatures on styrcne-butadiene-styrene block polymers. Shen and Kaelble (258) found that Williams-Landel-Ferry (WLF) (27) shift factors held around each of the glass transition temperatures of the polystyrene and the poly butadiene, but at intermediate temperatures a different type of shift factor had to be used to make a master curve. However, on very similar block polymers, Lim et ai. (25 )) found that a WLF shift factor held only below 15°C in the region between the glass transitions, and at higher temperatures an Arrhenius type of shift factor held. The reason for this difference in the shift factors is not known. Master curves have been made from creep and stress-relaxation data on partially miscible graft polymers of poly(ethyl acrylate) and poly(mcthyl methacrylate) (260). WLF shift factors held approximately, but the master curves covered 20 to 25 decades of time rather than the 10 to 15 decades for normal one-phase polymers. [Pg.118]

Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
Radiation Induced Reactions. Graft polymers have been prepared from poly(vinyl alcohol) by the irradiation of the polymer-monomer system and some other methods. The grafted side chains reported include acrylamide, acrylic acid, acrylonitrile, ethyl acrylate, ethylene, ethyl methacrylate, methyl methacrylate, styrene, vinyl acetate, vinyl chloride, vinyl pyridine and vinyl pyrrolidone (13). Poly(vinyl alcohols) with grafted methyl methacrylate and sometimes methyl acrylate have been studied as membranes for hemodialysis (14). Graft polymers consisting of 50% poly(vinyl alcohol), 25% poly(vinyl acetate) and 25% grafted ethylene oxide units can be used to prepare capsule cases for drugs which do not require any additional plasticizers (15). [Pg.84]

Fig. 5.8 Examples of polymers grafted from nanocarbons, (a) An ATRP initiator covalently attached to RGO via nitrene and carbodiimide chemistry was used for the growth of poly(2-(ethyl (phenyl)amino)ethyl-methacrylate). (b) A RAFT chain transfer agent is covalently attached to GO prior to polymerization of vinylcarbozole. Fig. 5.8 Examples of polymers grafted from nanocarbons, (a) An ATRP initiator covalently attached to RGO via nitrene and carbodiimide chemistry was used for the growth of poly(2-(ethyl (phenyl)amino)ethyl-methacrylate). (b) A RAFT chain transfer agent is covalently attached to GO prior to polymerization of vinylcarbozole.
Fig. 12.1.1 Dependence of order parameter, S. of the secondary polymer, spin-labeled poly (methyl methacrylate) (PMMA) and polystyrene (PST), bound to poly(maleic anhydride—styrene )-grafted silica on hexane content in ethyl acetate-hexane cosolvent. Numbers in parentheses are number average molecular weight of the secondary polymer. (From Ref. 48.)... Fig. 12.1.1 Dependence of order parameter, S. of the secondary polymer, spin-labeled poly (methyl methacrylate) (PMMA) and polystyrene (PST), bound to poly(maleic anhydride—styrene )-grafted silica on hexane content in ethyl acetate-hexane cosolvent. Numbers in parentheses are number average molecular weight of the secondary polymer. (From Ref. 48.)...
Brushes with diblock side chains have been prepared by the same concept as illustrated in Figure 13. In this case either a polystyrene block or a poly-(n-butylacrylate) block was grafted first by atom transfer polymerization, ATRP, on a poly(2-bro-mopropanoyl ethyl methacrylate), pBPEM, on which in a second step the other monomer was polymerized as the second block.189 Table 4 summarizes the molecular structure of the corresponding polymers, i.e., (i) the macroinitiator or mere backbone molecule (pPBEM) from which (ii) a brush with pnBuA homopolymer side chains (pBPEM-g—pnBuA), (iii) a... [Pg.380]

Cationic polymers, such as poly(L-lysine) (PEL), polyethylenimine (PEI), chitosan, polyamidoamine (PAMAM) dendrimers, poly(2-dimethylamino) ethyl methacrylate, and polyphosphoesters, condense DNA to form compacted polyplexes. ° The size and the stability of polyplexes depend on the ratio of cations vs. anions, temperature, ionic strength, and the solvent. Stability of polyplexes can be enhanced by conjugating PEG to the polycations or by using PEG-containing block or graft polymers that form micelles. Small cationic peptides are also able to condense DNA, however, six-consecutive-cations is the minimal requirement to achieve this effectively. [Pg.1105]

Pan et al. prepared a macroinitiator by chloromethylation of a commercially available AB block copolymer of poly (styrene-fe-ethylene-co-propylene) (SEP) and used it as a macroinitiator for the ATRP of ethyl methacrylate (EM A) [302]. The kinetic plot showed little evidence of termination during the reaction and the molecular weight of the graft copolymer increased linearly with the monomer conversion, resulting in a final Mn=73,200 and Mw/Mn=1.22. The weight ra-... [Pg.116]


See other pages where Graft poly /ethyl methacrylate is mentioned: [Pg.177]    [Pg.345]    [Pg.177]    [Pg.345]    [Pg.550]    [Pg.304]    [Pg.270]    [Pg.71]    [Pg.220]    [Pg.135]    [Pg.637]    [Pg.270]    [Pg.251]    [Pg.20]    [Pg.200]    [Pg.255]    [Pg.44]    [Pg.502]    [Pg.86]    [Pg.115]    [Pg.90]    [Pg.26]    [Pg.503]    [Pg.590]    [Pg.174]    [Pg.220]    [Pg.191]    [Pg.218]    [Pg.305]    [Pg.346]    [Pg.353]    [Pg.438]    [Pg.343]    [Pg.215]    [Pg.50]    [Pg.227]    [Pg.115]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Ethyl 2-methacrylate

Graft poly ethyl

Methacrylate graft

Poly - methacrylic

Poly ethyl

Poly graft

Poly grafted

Poly methacrylate

Poly methacrylics

© 2024 chempedia.info