Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly chain length

Mechanical and Thermal Properties. The first member of the acrylate series, poly(methyl acrylate), has fltde or no tack at room temperature it is a tough, mbbery, and moderately hard polymer. Poly(ethyl acrylate) is more mbberflke, considerably softer, and more extensible. Poly(butyl acrylate) is softer stiU, and much tackier. This information is quantitatively summarized in Table 2 (41). In the alkyl acrylate series, the softness increases through n-octy acrylate. As the chain length is increased beyond n-octy side-chain crystallization occurs and the materials become brittle (42) poly( -hexadecyl acrylate) is hard and waxlike at room temperature but is soft and tacky above its softening point. [Pg.163]

The thermal glass-transition temperatures of poly(vinyl acetal)s can be determined by dynamic mechanical analysis, differential scanning calorimetry, and nmr techniques (31). The thermal glass-transition temperature of poly(vinyl acetal) resins prepared from aliphatic aldehydes can be estimated from empirical relationships such as equation 1 where OH and OAc are the weight percent of vinyl alcohol and vinyl acetate units and C is the number of carbons in the chain derived from the aldehyde. The symbols with subscripts are the corresponding values for a standard (s) resin with known parameters (32). The formula accurately predicts that resin T increases as vinyl alcohol content increases, and decreases as vinyl acetate content and aldehyde carbon chain length increases. [Pg.450]

The kinetics of vinyl acetate emulsion polymeriza tion in the presence of alkyl phenyl ethoxylate surfactants of various chain lengths indicate that part of the emulsion polymerization occurs in the aqueous phase and part in the particles (115). A study of the emulsion polymerization of vinyl acetate in the presence of sodium lauryl sulfate reveals that a water-soluble poly(vinyl acetate)—sodium dodecyl sulfate polyelectrolyte complex forms, and that latex stabihty, polymer hydrolysis, and molecular weight are controlled by this phenomenon (116). [Pg.466]

In contrast to vitamin K, there has been considerably more activity on fermentative approaches to vitamin (50). The biosynthetic pathway to vitamin K2 is analogous to that of vitamin except that poly(prenylpyrophosphates) are the reactive alkylating agent (51,52). Menaquinones of varying chain lengths from to have been isolated from bacteria. The most common forms are vitamin K2 35, (40) (45) significant amount of K2 20)... [Pg.154]

A large number of organic acrylic ester polymer have been prepared in the laboratory. Poly (methyl acrylate) is tough, leathery and flexible. With increase in chain length there is a drop in the brittle point but this reaches a minimum with poly-(n-octyl acrylate) (see Figure 15.12.). The increase in brittle point with the higher acrylates, which is similar to that observed with the poly-a-olefins and the poly(alkyl methacrylate)s, is due to side-chain crystallisation. [Pg.423]

Fig. 3 a-c. Summary of data from different laboratories, obtained by surface force measurement, on the average layer thickness L as a function of tethered chain length for flat, tethered layers constructed by adsorption of amphiphilic polymers on mica. Adapted from Ref. 21. (a) Data of reference 20 on poly-tert-butylstyrene chains anchored by adsorbing blocks of poly-2-vinylpyridine. (b) Data of references 11 and 12 on polystyrene chains anchored by adsorbing blocks of poly-2-vinylpyridine. (c) Data of references 13 and 14 on polystyrene chains anchored by adsorbing zwitterionic groups [13] or by small adsorbing blocks of polyethyleneoxide [14]... [Pg.39]

Finally, ion chromatography can be used to determine the a-sulfo fatty acid esters. The chromatographic column is a nonpolar poly sty rene/divinylbenzene column and the ion pair reagent is 0.005 M ammonia. In order to reduce the elution time, acetonitrile is added as a modifier with increasing concentration. This gradient technique makes it possible to separate simultaneously ester sulfonates and disalts by chain length. Determination is achieved by standards with defined chain length [107]. [Pg.493]

In the field of soluble conducting polymers new data have been published on poly(3-alkylthiophenes " l They show that the solubility of undoped polymers increases with increasing chain length of the substituent in the order n-butyl > ethyl methyl. But, on the other hand, it has turned out that in the doped state the electro-chemically synthesized polymers cannot be dissolved in reasonable concentrations In a very recent paper Feldhues et al. have reported that some poly(3-alkoxythio-phenes) electropolymerized under special experimental conditions are completely soluble in dipolar aprotic solvents in both the undoped and doped states. The molecular weights were determined in the undoped state by a combination of gel-permeation chromatography (GPC), mass spectroscopy and UV/VIS spectroscopy. It was established that the usual chain length of soluble poly(3-methoxthythiophene) consists of six monomer units. [Pg.36]

Takagi, Y., Yasuda, R., Yamaoka, M. and Yamane, T. 2004. Morphologies and mechanical properties of polylactide blends with medium chain length poly(3-hydroxyalkanoate) and chemically modified poly(3-hydroxyalkanoate). Journal of Applied Polymer Science 93 2363-2369. [Pg.39]

HydTOX5 proline-derived polyesters are usually readily soluble in a variety of organic solvents (benzene, toluene, chloroform, dichloro-methane, carbon tetrachloride, tetrahydrofuran, dimethylformamide, etc.) As expected, the solubility in hydrophobic solvents increased with increasing chain length of the N protecting group, while the solubility in polar solvents decreased. For example, poly(N-hexanoyl-hydroxyproline ester) is slightly soluble in ether but easily soluble in acetonitrile, while poly(N-palmitoylhydroxyproline ester) is readily soluble in ether but virtually insoluble in acetonitrile. [Pg.205]

Compression-molded devices of poly(N-palmitoyl hydroxyproline ester) (side chain length 16 carbons), poly(N-decanoylhydroxy-proline ester) (side chain length 10 carbons), and poly(JN-hexanoyl-hydrox roline ester) (side chain length 6 carbons) were prepared with dye contents of 1,5,10, and 20% of either -nitroaniline or acid orange. Release curves were obtained by placing the loaded devices into phospate buffer (pH 7.4) at 37 C. The amount of released dye was followed spectrophotometrically in the usual fashion. [Pg.207]

Thus the quantity on the left evaluated for a series of polymer fractions differing only in chain length should be independent of M. Results shown in Table XLII for fractions of poly-(methyl methacry-late) and of polyisobutylene covering unusually wide ranges confirm this prediction within experimental error. It is borne out also by less extensive results of sedimentation measurements on several other systems. Introduction of the values of v, p, and rjo enables... [Pg.627]


See other pages where Poly chain length is mentioned: [Pg.2625]    [Pg.370]    [Pg.537]    [Pg.123]    [Pg.241]    [Pg.134]    [Pg.498]    [Pg.261]    [Pg.296]    [Pg.427]    [Pg.148]    [Pg.354]    [Pg.478]    [Pg.53]    [Pg.55]    [Pg.77]    [Pg.450]    [Pg.474]    [Pg.266]    [Pg.273]    [Pg.421]    [Pg.552]    [Pg.514]    [Pg.207]    [Pg.38]    [Pg.505]    [Pg.109]    [Pg.168]    [Pg.274]    [Pg.160]    [Pg.204]    [Pg.154]    [Pg.114]    [Pg.866]    [Pg.230]    [Pg.137]    [Pg.142]    [Pg.63]    [Pg.407]   
See also in sourсe #XX -- [ Pg.37 , Pg.38 , Pg.72 , Pg.150 ]




SEARCH



Alkyl poly chain length effect

Poly chain

Poly chain-length dependence

Poly critical entanglement chain length

© 2024 chempedia.info