Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biomedical poly

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

Alkenylsuccinic anhydrides made from several linear alpha olefins are used in paper sizing, detergents, and other uses. Sulfosuccinic acid esters serve as surface active agents. Alkyd resins (qv) are used as surface coatings. Chlorendric anhydride [115-27-5] is used as a flame resistant component (see Flame retardants). Tetrahydrophthalic acid [88-98-2] and hexahydrophthalic anhydride [85-42-7] have specialty resin appHcations. Gas barrier films made by grafting maleic anhydride to polypropylene [25085-53-4] film are used in food packaging (qv). Poly(maleic anhydride) [24937-72-2] is used as a scale preventer and corrosion inhibitor (see Corrosion and corrosion control). Maleic anhydride forms copolymers with ethylene glycol methyl vinyl ethers which are partially esterified for biomedical and pharmaceutical uses (189) (see Pharmaceuticals). [Pg.461]

Another biomedical appHcation of mictocapsules is the encapsulation of Hve mammalian ceUs for transplantation into humans. The purpose of encapsulation is to protect the transplanted ceUs or organisms from rejection by the host. The capsule sheU must prevent entrance of harmful agents into the capsule, aUow free transport of nutrients necessary for ceU functioning into the capsule, and aUow desirable ceUular products to freely escape from the capsule. This type of encapsulation has been carried out with a number of different types of Hve ceUs, but studies with encapsulated pancreatic islets or islets of Langerhans ate most common. The alginate—poly(L-lysine) encapsulation process originally developed in 1981 (54) catalyzed much of the ceU encapsulation work carried out since. A discussion of the obstacles to the appHcation of microencapsulation in islet transplantation reviewed much of the mote recent work done in this area (55). Animal ceU encapsulation has also been researched (56). [Pg.324]

Pharmaceutical and Biomedical Applications. On account of its low toxicity and unique properties, poly(ethylene oxide) is utilized in a variety of pharmaceutical and biomedical appHcations. [Pg.344]

Lubricious Coatings for Biomaterials. Coatings of poly(ethylene oxide) when dry are tactile. If brought into contact with water, the poly(ethylene oxide) hydates rapidly and forms a lubricious coating. This type of technology is of great interest for biomedical devices introduced into the human body, such as catheters and endotracheal tubes, and for sutures (114—117). [Pg.344]

Figure 12.30 Potential uses of polyphosphazenes (a) A thin film of a poly(aminophosphazene) sueh materials are of interest for biomedical applications, (b) Fibres of poly[bis(trifluoroethoxy)phosphazene] these fibres are water-repellant, resistant to hydrolysis or strong sunlight, and do not burn, (c) Cotton cloth treated with a poly(fluoroalkoxyphosphazene) showing the water repellaney eonferred by the phosphazene. (d) Polyphosphazene elastomers are now being manufaetured for use in fuel lines, gaskets, O-rings, shock absorbers, and carburettor eomponents they are impervious to oils and fuels, do not bum, and remain flexible at very low temperatures. Photographs by eourtesy of H. R. Allcock (Pennsylvania State University) and the Firestone Tire and Rubber Company. Figure 12.30 Potential uses of polyphosphazenes (a) A thin film of a poly(aminophosphazene) sueh materials are of interest for biomedical applications, (b) Fibres of poly[bis(trifluoroethoxy)phosphazene] these fibres are water-repellant, resistant to hydrolysis or strong sunlight, and do not burn, (c) Cotton cloth treated with a poly(fluoroalkoxyphosphazene) showing the water repellaney eonferred by the phosphazene. (d) Polyphosphazene elastomers are now being manufaetured for use in fuel lines, gaskets, O-rings, shock absorbers, and carburettor eomponents they are impervious to oils and fuels, do not bum, and remain flexible at very low temperatures. Photographs by eourtesy of H. R. Allcock (Pennsylvania State University) and the Firestone Tire and Rubber Company.
Grafting and modification of polymers have been found to have applications in the biomedical field. For example, poly(etherurethane), which has good elastomeric and often mechanical properties and a relatively high compatibility with blood, has been used in the man-... [Pg.255]

Poly(glycolic acid) Dexon Davis Geek Biomedical b... [Pg.28]

Poly(L-lactic acid) EcoPLA, NatureWorks Dow-Cargill Environmental, biomedical Lactic acid from corn starch fermentation... [Pg.28]

Poly(L-lactic acid) Lacty Shimadzu Environmental, biomedical b... [Pg.28]

An idea of the range of materials and applications for polymers in medicine can be gained from the information in Table 10.1. As can be seen from this table a number of polymers are used in medical applications. One particular such polymer is poly (methyl methacrylate), PMMA. Early on it was used as the material for fabricating dentures later other biomedical applications developed. For example, PMMA is now used as the cement in the majority of hip replacement operations worldwide. [Pg.147]

Among other uses, these polymers have been employed in a variety of biomedical applications. Poly(phosphazenes) containing organic side chains, derived from the anaesthetics procaine and benzocaine, have been used to prolong the anaesthetic effect of their precursor drugs. They have also been used as the bioerodable matrix for the controlled delivery of drugs. [Pg.155]

Xu, R., Manias, E., Snyder, A.J. and Runt, J. 2001. New biomedical poly(urethane uera)-layered silicate nanocomposites. Macromolecules 34 337-339. [Pg.40]

Harris JM (ed) (1992) Poly(ethylene glycol) chemistry biotechnical and biomedical applications. Plenum, New York... [Pg.68]

Nicholson, J. W., Braybrook, J. H. Wasson, E. A. (1991). The biocompatibility of glass-poly(alkenoate) (glass-ionomer) a review. Journal of Biomedical Science, Polymer Edition, 2, 277-85. [Pg.188]

This chapter is devoted to a miscellaneous group of aqueous acid-base cements that do not fit into other categories. There are numerous cements in this group. Although many are of little practical interest, some are of theoretical interest, while others have considerable potential as sustained-release devices and biomedical materials. Deserving of special mention as biomedical materials of the future are the recently invented polyelectrolyte cements based on poly(vinylphosphonic adds), which are related both to the orthophosphoric acid and poly(alkenoic add) cements. [Pg.307]

POLY (ETHYLENE GLYCOL) CHEMISTRY Biotechnical and Biomedical Applications... [Pg.304]

Drug Release from PHEMA-l-PIB Networks. Amphiphilic networks due to their distinct microphase separated hydrophobic-hydrophilic domain structure posses potential for biomedical applications. Similar microphase separated materials such as poly(HEMA- -styrene-6-HEMA), poly(HEMA-6-dimethylsiloxane- -HEMA), and poly(HEMA-6-butadiene- -HEMA) triblock copolymers have demonstrated better antithromogenic properties to any of the respective homopolymers (5-S). Amphiphilic networks are speculated to demonstrate better biocompatibility than either PIB or PHEMA because of their hydrophilic-hydrophobic microdomain structure. These unique structures may also be useful as swellable drug delivery matrices for both hydrophilic and lipophilic drugs due to their amphiphilic nature. Preliminary experiments with theophylline as a model for a water soluble drug were conducted to determine the release characteristics of the system. Experiments with lipophilic drugs are the subject of ongoing research. [Pg.210]

J. Heller, AU Daniels. Poly(orthoesters). In SW Shalaby, ed. Biomedical Polymers Designed-to-Degrade Systems. Cincinnati, OH Hanser/Gardner, 1994, pp 1-34. [Pg.557]

The utility of MALDI-FTMS analysis for use in chemotaxonomic applications has been established, but this method can be applied to other areas of interest, such as biomedical and environmental analyses. A common method used by biochemists and biologists today is recombinant overexpression of proteins using bacterial whole cells in cases where large quantity of a protein is desired. The main method presently used to determine if the overexpression was successful is the use of SDS-PAGE (sodium dodecylsulfate-poly acrylamide gel... [Pg.293]

Apart from modifications in the bulk, also surface modification of PHAs has been reported. Poly(3HB-co-3HV) film surfaces have been subjected to plasma treatments, using various (mixtures of) gases, water or allyl alcohol [112-114]. Compared to the non-treated polymer samples, the wettability of the surface modified poly(3HB-co-3HV) was increased significantly [112-114]. This yielded a material with improved biocompatibility, which is imperative in the development of biomedical devices. [Pg.271]


See other pages where Biomedical poly is mentioned: [Pg.2625]    [Pg.734]    [Pg.516]    [Pg.432]    [Pg.377]    [Pg.477]    [Pg.27]    [Pg.201]    [Pg.225]    [Pg.225]    [Pg.230]    [Pg.241]    [Pg.873]    [Pg.226]    [Pg.135]    [Pg.137]    [Pg.152]    [Pg.168]    [Pg.182]    [Pg.200]    [Pg.236]    [Pg.272]    [Pg.273]    [Pg.273]    [Pg.21]    [Pg.26]    [Pg.27]    [Pg.175]   


SEARCH



© 2024 chempedia.info