Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly biocompatible

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

Sundback CA, Shyu JY, Wang YD, Faquin WC, Danger RS, Vacanti JP, and Hadlock TA. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 2005, 26, 5454-5464. [Pg.247]

Implants in the rabbit corneas exhibited no observable inflammatory characteristics over a period of 6 weeks. Compared to other previously tested polymers, the inertness of these polyanhydrides rivals that of the biocompatible poly(hydroxyethyl methacrylate) and ethylene-vinyl acetate copolymer. Histological examination of the removed corneas also revealed the absence of inflammatory cells (21)... [Pg.66]

M., McConnell, R., Lange, N., and Langer, R., Poly(anhy-dride) administration in high doses in vivo Studies of biocompatibility and toxicology, J. Biomed. Mat. Res., In Press. [Pg.69]

Our interest in the synthesis of poly (amino acids) with modified backbones is based on the hypothesis that the replacement of conventional peptide bonds by nonamide linkages within the poIy(amino acid) backbone can significantly alter the physical, chemical, and biological properties of the resulting polymer. Preliminary results (see below) point to the possibility that the backbone modification of poly(amino acids) circumvents many of the limitations of conventional poly(amino acids) as biomaterials. It seems that backbone-modified poly (amino acids) tend to retain the nontoxicity and good biocompatibility often associated with conventional poly (amino acids)... [Pg.197]

Although the initially reported tissue compatibility tests for subcutaneous implants of poly(BPA-iminocarbonate) were encouraging (41,42), it is doubtful whether this polymer will pass more stringent biocompatibility tests. In correspondence with the properties of most synthetic phenols, BPA is a known irritant and most recent results indicate that BPA is cytotoxic toward chick embryo fibroblasts in vitro (43). Thus, initial results indicate that poly(BPA-iminocarbonate) is a polymer with highly promising material properties, whose ultimate applicability as a biomaterial is questionable due to the possible toxicity of its monomeric building blocks. [Pg.213]

It was therefore particularly inteipesting to investiage whether it would be possible to replace BPA by various derivatives of L-tyrosine as monomeric building blocks for the synthesis of poly-(iminocarbonates). In order to be practically useful in drug delivery applications, the replacement of BPA by derivatives of tyrosine must give rise to mechanically strong yet fully biocompatible polymers. [Pg.213]

In order to test the tissue compatibility of tyrosine-derived poly-(iminocarbonates), solvent cast films of poIy(CTTH) were subcutaneously implanted into the back of outbread mice. In this study, conventional poly(L-tyrosine) served as a control (42). With only small variations, the experimental protocol described for the biocompatibility testing of poly(N-palmitoylhydroxyproline ester) (Sec. III. [Pg.223]

Nicholson, J. W., Braybrook, J. H. Wasson, E. A. (1991). The biocompatibility of glass-poly(alkenoate) (glass-ionomer) a review. Journal of Biomedical Science, Polymer Edition, 2, 277-85. [Pg.188]

One of the most successful conjugate polymer systems was developed by Duncan and Kopecek (25). The polymer carrier used in their system is poly [N(2-hydroxypropyl) methacrylamide] a biocompatible polymer that was originally developed as a plasma extender. They have evaluated a number of polymer conjugated drugs for cancer chemotherapy with interesting results. The attachment of the drug is through a peptidyl spacer pendent to the polymer backbone. These peptides links are stable in aqueous media but are readily hydrolyzed intracellularly... [Pg.14]

In an attempt to identify new, biocompatible diphenols for the synthesis of polyiminocarbonates and polycarbonates, we considered derivatives of tyrosine dipeptide as potential monomers. Our experimental rationale was based on the assumption that a diphenol derived from natural amino acids may be less toxic than many of the industrial diphenols. After protection of the amino and carboxylic acid groups, we expected the dipeptide to be chemically equivalent to conventional diphenols. In preliminary studies (14) this hypothesis was confirmed by the successful preparation of poly(Z-Tyr-Tyr-Et iminocarbonate) from the protected tyrosine dipeptide Z-Tyr-Tyr-Et (Figure 3). Unfortunately, poly (Z-Tyr-Tyr-Et iminocarbonate) was an insoluble, nonprocessible material for which no practical applications could be identified. This result illustrated the difficulty of balancing the requirement for biocompatibility with the need to obtain a material with suitable "engineering" properties. [Pg.158]

New drug delivery systems are of great scientific and commercial interest. Amphiphilic networks composed of about 50/50 hydrophobic PIB and hydrophilic poly(2-(-dimethylamino)ethyl methacrylate) (DMAEMA) polymer segments were found to be biocompatible and to a large extent avascular (7). These PHM-PDMAEMA networks (i, in line with propositions of Weber and Stadler (2), and Sperling (J), denotes PDMAEMA chains linked by PIB chains) gave pH dependent... [Pg.194]

Drug Release from PHEMA-l-PIB Networks. Amphiphilic networks due to their distinct microphase separated hydrophobic-hydrophilic domain structure posses potential for biomedical applications. Similar microphase separated materials such as poly(HEMA- -styrene-6-HEMA), poly(HEMA-6-dimethylsiloxane- -HEMA), and poly(HEMA-6-butadiene- -HEMA) triblock copolymers have demonstrated better antithromogenic properties to any of the respective homopolymers (5-S). Amphiphilic networks are speculated to demonstrate better biocompatibility than either PIB or PHEMA because of their hydrophilic-hydrophobic microdomain structure. These unique structures may also be useful as swellable drug delivery matrices for both hydrophilic and lipophilic drugs due to their amphiphilic nature. Preliminary experiments with theophylline as a model for a water soluble drug were conducted to determine the release characteristics of the system. Experiments with lipophilic drugs are the subject of ongoing research. [Pg.210]


See other pages where Poly biocompatible is mentioned: [Pg.529]    [Pg.102]    [Pg.105]    [Pg.70]    [Pg.201]    [Pg.213]    [Pg.222]    [Pg.223]    [Pg.224]    [Pg.228]    [Pg.238]    [Pg.245]    [Pg.873]    [Pg.22]    [Pg.191]    [Pg.202]    [Pg.209]    [Pg.226]    [Pg.112]    [Pg.168]    [Pg.586]    [Pg.587]    [Pg.596]    [Pg.597]    [Pg.715]    [Pg.154]    [Pg.167]    [Pg.200]    [Pg.573]    [Pg.492]    [Pg.541]    [Pg.22]    [Pg.52]    [Pg.138]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Biocompatibility

Biocompatibility of poly

Biocompatibility poly

Biocompatibility poly

Biocompatibility synthetic poly

Poly copolymers biocompatibility

Poly dendrimers biocompatibility

© 2024 chempedia.info