Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly aryls

Cellulose nitrate resin Poly(aryl ether)... [Pg.1010]

Poly(aryl ether), unfilled 30% glass-fiber reinforced Poly(butylene terephthalate) Poly(ethylene terephthalate) ... [Pg.1045]

A large variety of newer poly(ether imide)s has been described. Included among these are perfluorinated polymers (96), poly(ester ether imide)s (97), poly(ether imide)s derived from A/,Ar-diamino-l,4,5,8-naphthalenetetracarboxyHcbisimide (98), and poly(arylene ether imide ketone)s (99). In addition, many other heterocyHc groups have been introduced into polyether systems, eg, poly(pyrazole ether)s (100) and poly(aryl ether phenylquinoxaLine)s (101) poly(aryl ether oxazole)s with trifluoromethyl groups (102) and polyethers with other heterolinkages, eg, poly(arylether azine)s (103). [Pg.334]

Not surprisingly a number of other poly(aryl ethers) have been prepared from aromatic dihalides not containing sulphone links. For example, a number have been prepared from difluorobenzophenone and, in general, it is found that such materials have TgS about 30-40°C lower than the corresponding sulphone polyether. In fact it is generally found that the higher Tg values are obtained with the sulphone polyethers. [Pg.599]

Several poly aryl ether ketones, generically given the abbreviation PAEK, have been reported in the literature, including those shown in Table 21.5. Of these, three have been in commercial production. They are ... [Pg.603]

Although the sulfone activated biphenyl and the ketone activated naphthalene moiety for the displacement polymerization have been reported by Attwood et al. [11], these were rediscovered by Cummings et al. [12] and Hergenrother et al. [13], respectively, for the synthesis of poly(aryl ethers). Recently, Singh and Hay [14] reported polymers containing 0-dibenzoyl benzene (1,2,3) moiety by reaction between bis(O-fluorobenzoyl) benzene or substituted benzene with bisphenates of alkali metal salt in DMAC as follows ... [Pg.36]

The new fluorescent poly(aryl ethers) derived from nonfluorescent monomers have gained significant attention from polymer scientists [20]. These polymers are prepared by the polymerization of phenolphthalein and its derivatives with activated aromatic difluorides. [Pg.36]

It is interesting to note that all the new aromatic systems, as described, undergo displacement polymerizations in DMAC solvent by the K2CO3 method, except perfluoroalkylene [10] and amide activated polymerization [9], which were performed in NMP solvent. The displacement polymerization in DMAC solvent was carried out at 155-164°C. poly(aryl ether ketones) require less reaction time (3-6 h) than other aromatic systems for synthesis of polyethers [15]. Synthesis of the fluorinated polyether as reported by Irvin et al. [16] was carried out at room temperature for 16 h (Mw = 75,000), whereas the same polymer by Mercer et al. [17] was synthesized at 120°C for 17 h (Mw = 78,970). [Pg.37]

Diphenol/thiophenol is one of the most important polymer precursors for synthesis of poly(aryl ethers) or poly-(aryl sulfides) in displacement polymerizations. Commonly used bisphenols are 4,4 -isopropylidene diphenol or bisphenol-A (BPA) due to their low price and easy availability. Other commercial bisphenols have also been reported [7,24,25]. Recently, synthesis of poly(aryl ethers) by the reaction of new bisphenol monomers with activated aromatic dihalides has been reported. The structures of the polymer precursors are described in Table 2. Poly(aryl ether phenylquinoxalines) have been synthesized by Connell et al. [26], by the reaction of bisphenols containing a preformed quinoxaline ring with... [Pg.37]

Among organic materials, poly(aryl ethers) and poly (aryl sulfides) have been known, as a class of engineering thermoplastics. The electron withdrawing sulfone and ketone groups usually activate the dihalo or dinitro compounds to facilitate the nucleophilic displacement through the transition state called Meisenheimer-Iike complex, and, thus, poly(aryl ether or sulfide) sulfones... [Pg.39]

The use of other heterocyclic rings in displacement polymerization has been recently reported. Table 3 shows the new dihalo heterocyclic monomers used for synthesis of poly(aryl ethers). [Pg.39]

The above mentioned new heterocyclic systems have not been used in the preparation of poly(aryl sulfides). The authors reported [57] a polyheteroarylene sulfide by the reaction between 2,6-dichloropyridine and sodium sulfide. [Pg.39]

Similarly, the other new heterocycle containing poly (aryl ethers) have been synthesized by many researchers... [Pg.39]

The advantage of the activated displacement polymerization is the facile incorporation of different and unconventional structural units in the polymer backbone. Most of the heteroarylene activated polyethers prepared by this route are soluble in many organic solvents. The solubility behavior of new polyethers is shown in Table 8. In contrast to many polyphenylenequi-noxalines, poly(aryl ether phenylquinoxalines) prepared by the quionoxaline activated displacement reaction are soluble in NMP. Solubility in NMP is important since it is frequently used for polymer processing in the microelectronics industry [27]. [Pg.50]

Many engineering thermoplastics (e.g., polysulfone, polycarbonate, etc.) have limited utility in applications that require exposure to chemical environments. Environmental stress cracking [13] occurs when a stressed polymer is exposed to solvents. Poly(aryl ether phenylquin-oxalines) [27] and poly(aryl ether benzoxazoles) [60] show poor resistance to environmental stress cracking in the presence of acetone, chloroform, etc. This is expected because these structures are amorphous, and there is no crystallinity or liquid crystalline type structure to give solvent resistance. Thus, these materials may have limited utility in processes or applications that require multiple solvent coatings or exposures, whereas acetylene terminated polyaryl ethers [13] exhibit excellent processability, high adhesive properties, and good resistance to hydraulic fluid. [Pg.56]

Recendy, Guiver et al. reported a number of derivatives of polysulfone and poly(aryl sulfone).172 188 Polysulfones were activated either on the ortho-sulfone sites or the ortho-ether sites by direct lithiation or bromination-lithiation. The lithiated intermediates were claimed to be quantitatively converted to azides by treatment with tosyl azides. Azides are thermally and photochemically labile groups capable of being transformed readily into a number of other useful derivatives. [Pg.354]

Poly(arylene thioether)s, 363-364 Poly(arylene thioether sulfone)s, 364 Poly(aryl sulfone) derivatives, 354 Poly(p-benzamide), synthesis of, 188-189 Polybenzimidazoles (PBIs), 265 ferrocene-containing, 315 synthesis of, 313... [Pg.594]

Synthesis of Poly(Aryl Ester)-Polysiloxane Segmented Copolymers 117)... [Pg.38]

Table 17 provides a list of various polysiloxane-poly(aryl ether) copolymers investigated. Depending on the type, nature and the level of the hard blocks incorporated, physical, thermal and mechanical properties of these materials can be varied over a very wide range from that of thermoplastic elastomers to rubber modified engineering thermoplastics. Resultant copolymers are processable by solution techniques and in some cases by melt processing 22,244). [Pg.43]

Table 17. Structure of the hard segments in poly(Aryl ether)-polydimethylsiloxane segmented copolymers... Table 17. Structure of the hard segments in poly(Aryl ether)-polydimethylsiloxane segmented copolymers...
Methanofullerene 20 with phenylacetylene dendrimer addends has also been reported [45] (Fig. 10). The UV absorption of fullerodendrimer 20 is particularly strong and is mainly attributed to transitions located on the two dendritic branches of the molecule. The photophysical investigations revealed that the large poly(aryl)acetylene branches act as photon antennae [46]. [Pg.96]

Chiral dendrimers based on oligonaphthyl cores and Fr chet-type poly(aryl ether) dendrons have been investigated [44]. The absolute configuration of these dendrimers remains the same as that of their chiral cores. Both the nature of the core and the generation play a role in determining the fluorescence quantum yield. [Pg.170]

Poly(aryl ether) branches of generation 1 to 3 have been appended to a pho-totautomerizable quinoHne core to investigate the effect of dendritic architecture on the excited state intramolecular proton transfer [45]. The changes observed in the absorption and emission spectra on increasing dendrimer generation indicate that the dendritic branches affect the planarity of the core and therefore the efficiency of the excited state intramolecular proton transfer and of the related fluorescence processes. [Pg.170]

In a recent study, poly(aryl ether) dendritic branches terminated with triethyleneglycol chains were attached to Cgg [66] dendrimer 32 represents the fourth generation. The photophysical properties of these fullerodendrimers have been systematically investigated in three solvents, namely toluene, dichloromethane, and acetonitrile. On increasing dendrimer generation, it has been found that in each solvent (i) the maximum of the fullerene fluorescence band is red-shifted... [Pg.180]

Devaux, J., Delimoy, D., Daoust, D., Legras, R., and Mercier, F. J., On the molecular weight determination of a poly(aryl-ether-ether-ketone) (PEEK ), Polymer, 26, 1994, 1985. [Pg.367]

Fig. 6. Frechet s water-soluble poly aryl ethereal dendrimer... Fig. 6. Frechet s water-soluble poly aryl ethereal dendrimer...

See other pages where Poly aryls is mentioned: [Pg.777]    [Pg.535]    [Pg.537]    [Pg.36]    [Pg.36]    [Pg.39]    [Pg.39]    [Pg.41]    [Pg.41]    [Pg.56]    [Pg.56]    [Pg.739]    [Pg.37]    [Pg.43]    [Pg.43]    [Pg.73]    [Pg.89]    [Pg.176]    [Pg.99]    [Pg.16]    [Pg.62]    [Pg.71]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



© 2019 chempedia.info