Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarization components

If the vapor mixture contains only ideal gases, the integrals in Equations (3) and (6) are zero, z is unity for all compositions, and ()i equals 1 for each component i. At low pressures, typically less than 1 bar, it is frequently a good assumption to set ( ) = 1, but even at moderately low pressures, say in the vicinity of 1 to 10 bars, (f) is often significantly different from unity, especially if i is a polar component. [Pg.27]

For non-polar components like hydrocarbons, the results are very satisfactory for calculations of vapor pressure, density, enthalpy, and specific, heat and reasonably close for viscosity and conductivity provided that is greater than 0.10. [Pg.111]

The relation applies to mixtures of non-polar components such as hydrocarbons in this range ... [Pg.142]

In the manufacture of base oils, one of the refining operations is to extract with the aid of an appropriate solvent (furfural most often) the most aromatic fractions and the polar components. When free of solvent, the extracted aromatic fraction can eventually be refined, particularly to remove color or to thicken it, or still further, to fractionate it. The term, aromatic extract is used in every case. [Pg.291]

Equation (B 1,9.11) is valid only for plane polarized light. For unpolarized incident light, the beam can be resolved into two polarized components at right angles to each other. The scattered intensity can thus be expressed as (figure Bl.9.2)... [Pg.1388]

On metals in particular, the dependence of the radiation absorption by surface species on the orientation of the electrical vector can be fiilly exploited by using one of the several polarization techniques developed over the past few decades [27, 28, 29 and 30], The idea behind all those approaches is to acquire the p-to-s polarized light intensity ratio during each single IR interferometer scan since the adsorbate only absorbs the p-polarized component, that spectral ratio provides absorbance infonnation for the surface species exclusively. Polarization-modulation mediods provide the added advantage of being able to discriminate between the signals due to adsorbates and those from gas or liquid molecules. Thanks to this, RAIRS data on species chemisorbed on metals have been successfidly acquired in situ under catalytic conditions [31], and even in electrochemical cells [32]. [Pg.1782]

Since we are interested in the polar components of t q, 0), that is, tq and te, we need to know their relation with and ty as well, which was derived sometime... [Pg.732]

Along the x axis, both sin 0y and sin 0 equal unity. The light consists of equal amounts of horizontally and vertically polarized components, that is, it is unpolarized, and has twice the intensity observed in the perpendicular directions. [Pg.674]

The principal nonpolar-type adsorbent is activated carbon. Kquilihrium data have been reported on hydrocarbon systems, various organic compounds in water, and mixtures of organic compounds (11,15,16,46,47). With some exceptions, the least polar component of a mixture is selectively adsorbed eg, paraffins are adsorbed selectively relative to olefins of the same carbon number, but dicycUc aromatics are adsorbed selectively relative to monocyclic aromatics of the same carbon number (see Carbon, activated carbon). [Pg.292]

Fig. 1. Representative device configurations exploiting electrooptic second-order nonlinear optical materials are shown. Schematic representations are given for (a) a Mach-Zehnder interferometer, (b) a birefringent modulator, and (c) a directional coupler. In (b) the optical input to the birefringent modulator is polarized at 45 degrees and excites both transverse electric (TE) and transverse magnetic (TM) modes. The appHed voltage modulates the output polarization. Intensity modulation is achieved using polarizing components at the output. Fig. 1. Representative device configurations exploiting electrooptic second-order nonlinear optical materials are shown. Schematic representations are given for (a) a Mach-Zehnder interferometer, (b) a birefringent modulator, and (c) a directional coupler. In (b) the optical input to the birefringent modulator is polarized at 45 degrees and excites both transverse electric (TE) and transverse magnetic (TM) modes. The appHed voltage modulates the output polarization. Intensity modulation is achieved using polarizing components at the output.
For both polar and nonpolar nonhydrocaihon gaseous mixtui es at low pressui es, the most accurate viscosity prediction method is the method of Brokaw. The method is quite accurate but requires the dipole moment and the Stockmayer energy parameter (e/A ) for polar components as well as pure component viscosities, molecular weights, the normal boding point, and the hq-uid molar volume at the normal boding point. The Technical Data Manual should be consulted for the fidl method. [Pg.408]

Binary Mixtures—Low Pressure—Polar Components The Brokaw correlation was based on the Chapman-Enskog equation, but 0 g and were evaluated with a modified Stockmayer potential for polar molecules. Hence, slightly different symbols are used. That potential model reduces to the Lennard-Jones 6-12 potential for interactions between nonpolar molecules. As a result, the method should yield accurate predictions for polar as well as nonpolar gas mixtures. Brokaw presented data for 9 relatively polar pairs along with the prediction. The agreement was good an average absolute error of 6.4 percent, considering the complexity of some of... [Pg.595]

Do not use this equation for systems containing polar components including water. [Pg.355]

In general, the dissection of substituertt effects need not be limited to resonance and polar components, vdiich are of special prominence in reactions of aromatic compounds.. ny type of substituent interaction with a reaction center could be characterized by a substituent constant characteristic of the particular type of interaction and a reaction parameter indicating the sensitivity of the reaction series to that particular type of interactioa For example, it has been suggested that electronegativity and polarizability can be treated as substituent effects separate from polar and resonance effects. This gives rise to the equation... [Pg.211]

Where there are multi-layers of solvent, the most polar is the solvent that interacts directly with the silica surface and, consequently, constitutes part of the first layer the second solvent covering the remainder of the surface. Depending on the concentration of the polar solvent, the next layer may be a second layer of the same polar solvent as in the case of ethyl acetate. If, however, the quantity of polar solvent is limited, then the second layer might consist of the less polar component of the solvent mixture. If the mobile phase consists of a ternary mixture of solvents, then the nature of the surface and the solute interactions with the surface can become very complex indeed. In general, the stronger the forces between the solute and the stationary phase itself, the more likely it is to interact by displacement even to the extent of displacing both layers of solvent (one of the alternative processes that is not depicted in Figure 11). Solutes that exhibit weaker forces with the stationary phase are more likely to interact with the surface by sorption. [Pg.101]

Geometric mean approximation Dispersive and polar components of solid surface energy are found by solving yiv(l +COS0) = 2(y,Xf + 2(y Yl S An extension of GGF equation ysa predicted is significantly higher than the critical surface tension. [84]... [Pg.100]

The work of adhesion between a PSA and a release coating can be expressed in terms of the dispersive and polar components of the surface energies of the PSA and release coating [8]. [Pg.537]

Paper chromatography (benzene-chloroform 1 1—formamide system) of representative chromatogram fractions indicates the presence of a small quantity of a more polar ultraviolet absorbing component that gives a negative blue tetrazolium test and a very polar component (no ultraviolet negative tetrazolium test). These materials have not been characterized. [Pg.93]

Measurement of the contact angle at a solid-liquid interface is a widely used method for the determination of the surface energy of solid polymers. Fowkes [1] first proposed that the surface energy of a pure phase, y y could be represented by the sum of the contribution from different types of force components, especially the dispersion and the polar components, such that ... [Pg.518]

With respect to the carrier mechanism, the phenomenology of the carrier transport of ions is discussed in terms of the criteria and kinetic scheme for the carrier mechanism the molecular structure of the Valinomycin-potassium ion complex is considered in terms of the polar core wherein the ion resides and comparison is made to the Enniatin B complexation of ions it is seen again that anion vs cation selectivity is the result of chemical structure and conformation lipid proximity and polar component of the polar core are discussed relative to monovalent vs multivalent cation selectivity and the dramatic monovalent cation selectivity of Valinomycin is demonstrated to be the result of the conformational energetics of forming polar cores of sizes suitable for different sized monovalent cations. [Pg.176]

Chlorosultones can be identified and determined directly by scraping the appropriate region from the TLC plate and analyzing the adsorbed material by HPLC. This procedure was not satisfactory for chlorosultone levels below 5 ppm, however, since the chlorosultone region of the TLC plate contains many other low-polarity components. [Pg.446]


See other pages where Polarization components is mentioned: [Pg.502]    [Pg.1194]    [Pg.1781]    [Pg.199]    [Pg.248]    [Pg.683]    [Pg.130]    [Pg.202]    [Pg.172]    [Pg.307]    [Pg.310]    [Pg.404]    [Pg.189]    [Pg.548]    [Pg.1880]    [Pg.1880]    [Pg.537]    [Pg.631]    [Pg.443]    [Pg.1125]    [Pg.1125]    [Pg.180]    [Pg.518]    [Pg.524]    [Pg.341]    [Pg.154]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.168 , Pg.169 ]




SEARCH



Angular momentum polar component

Binary Mixtures—Low Pressure—Polar Components

Cartesian polarization components

Contact Angle, Surface Free Energy, and Polar Component

Mobility polar components

Physical Components in Cylindrical Polar Coordinates

Polar component

Polar component

Polar component of surface energy

Polar component of surface tension

Polar components, mixtures with

Polarization moments longitudinal components

Polarization moments transversal components

Polymers and Polar Components

Solubility polar component

Spherical polar components

Surface energy polar component

Surface tension polar component

© 2024 chempedia.info