Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarizable continuum medium

A more sophisticated description of the solvent is achieved using an Apparent Surface Charge (ASC) [1,3] placed on the surface of a cavity containing the solute. This cavity, usually of molecular shape, is dug into a polarizable continuum medium and the proper electrostatic problem is solved on the cavity boundary, taking into account the mutual polarization of the solute and solvent. The Polarizable Continuum Model (PCM) [1,3,7] belongs to this class of ASC implicit solvent models. [Pg.64]

Fig. 2.2 Self-Consistent Reaction Field (SCRF) model for the inclusion of solvent effects in semi-empirical calculations. The solvent is represented as an isotropic, polarizable continuum of macroscopic dielectric e. The solute occupies a spherical cavity of radius ru, and has a dipole moment of p,o. The molecular dipole induces an opposing dipole in the solvent medium, the magnitude of which is dependent on e. Fig. 2.2 Self-Consistent Reaction Field (SCRF) model for the inclusion of solvent effects in semi-empirical calculations. The solvent is represented as an isotropic, polarizable continuum of macroscopic dielectric e. The solute occupies a spherical cavity of radius ru, and has a dipole moment of p,o. The molecular dipole induces an opposing dipole in the solvent medium, the magnitude of which is dependent on e.
Quantitative models of solute-solvent systems are often divided into two broad classes, depending upon whether the solvent is treated as being composed of discrete molecules or as a continuum. Molecular dynamics and Monte Carlo simulations are examples of the former 8"11 the interaction of a solute molecule with each of hundreds or sometimes even thousands of solvent molecules is explicitly taken into account, over a lengthy series of steps. This clearly puts a considerable demand upon computer resources. The different continuum models,11"16 which have evolved from the work of Bom,17 Bell,18 Kirkwood,19 and Onsager20 in the pre-computer era, view the solvent as a continuous, polarizable isotropic medium in which the solute molecule is contained within a cavity. The division into discrete and continuum models is of course not a rigorous one there are many variants that combine elements of both. For example, the solute molecule might be surrounded by a first solvation shell with the constituents of which it interacts explicitly, while beyond this is the continuum solvent.16... [Pg.22]

In more recent work, Johnston and co-workers (17,18,20,27,32) showed quantitatively that the local fluid density about the solute is greater than the bulk density. In these papers, results were presented for CQ2, C2H4, CF3H, and CF3C1. Local densities were recovered by comparison of the observed spectral shift (or position) to that expected for a homogeneous polarizable dielectric medium. Clustering manifests itself in deviation from the expected linear McRae continuum model (17,18,20,27,32,56,57). These data were subsequently interpreted using an expression derived from Kirkwood-Buff solution theory (20). Detailed theoretical... [Pg.9]

The form of the free energy functional G appearing in the Polarizable Continuum Model is discussed in refs [35-37], Recently, Mennucci and Cammi have extended their integral equation formalism model for medium effects on shielding to the NMR shielding tensor for solutions in liquid crystals [38,39],... [Pg.133]

The recent progress of computational quantum chemistry has made it possible to get realistic descriptions of vibrational frequencies for polyatomic molecules in solution. The first attempt in this direction was made by Rivail el al. [1] by exploiting a semiempirical QM molecular model coupled with a continuum description of the medium to compute vibrational frequency shifts for molecular solutes. An extension to ab initio QM methods, including the treatment of electron correlation effects and electrical and mechanical anharmonicities, was then proposed [2 1] in the framework of the Polarizable Continuum Model (PCM). [Pg.167]

J. Tomasi, R. Cammi and B. Mennucci, Medium effects on the properties of chemical systems An overview of recent formulations in the polarizable continuum model (PCM), Int. J. Quantum Chem., 75 (1999) 783-803. [Pg.334]

The valence bond method with polarizable continuum model (VBPCM) method (55) includes solute—solvent interactions in the VB calculations. It uses the same continuum solvation model as the standard PCM model implemented in current ab initio quantum chemistry packages, where the solvent is represented as a homogeneous medium, characterized by a dielectric constant, and is polarizable by the charge distribution of the solute. The interaction between the solute charges and the polarized electric field of the solvent is taken into account through an interaction potential that is embedded in the... [Pg.255]

Over the last years, the basic concepts embedded within the SCRF formalism have undergone some significant improvements, and there are several commonly used variants on this idea. To exemplify the different methods and how their results differ, one recent work from this group [52] considered the sensitivity of results to the particular variant chosen. Due to its dependence upon only the dipole moment of the solute, the older approach is referred to herein as the dipole variant. The dipole method is also crude in the sense that the solute is placed in a spherical cavity within the solute medium, not a very realistic shape in most cases. The polarizable continuum method (PCM) [53,54,55] embeds the solute in a cavity that more accurately mimics the shape of the molecule, created by a series of overlapping spheres. The reaction field is represented by an apparent surface charge approach. The standard PCM approach utilizes an integral equation formulation (IEF) [56,57], A variant of this method is the conductor-polarized continuum model (CPCM) [58] wherein the apparent charges distributed on the cavity surface are such that the total electrostatic potential cancels on the surface. The self-consistent isodensity PCM procedure [59] determines the cavity self-consistently from an isodensity surface. The UAHF (United Atom model for Hartree-Fock/6-31 G ) definition [60] was used for the construction of the solute cavity. [Pg.410]

The Polarizable Continuum Model (PCM)[18] describes the solvent as a structureless continuum, characterized by its dielectric permittivity e, in which a molecular-shaped empty cavity hosts the solute fully described by its QM charge distribution. The dielectric medium polarized by the solute charge distribution acts as source of a reaction field which in turn polarizes back the solute. The effects of the mutual polarization is evaluated by solving, in a self-consistent way, an electrostatic Poisson equation, with the proper boundary conditions at the cavity surface, coupled to a QM Schrodinger equation for the solute. [Pg.181]

Other Work on Water-Related Systems. Sonoda et al.61 have simulated a time-resolved optical Kerr effect experiment. In this model, which uses molecular dynamics to represent the behaviour of the extended medium, the principle intermolecular effects are generated by the dipole-induced-dipole (DID) mechanism, but the effect of the second order molecular response is also include through terms involving the static molecular / tensor, calculated by an MP2 method. Weber et al.6S have applied ab initio linear scaling response theory to water clusters. Skaf and Vechi69 have used MP2/6-311 ++ G(d,p) calculation of the a and y tensors of water and dimethylsulfoxide (DMSO) to carry out a molecular dynamics simulation of DMSO/Water mixtures. Frediani et al.70 have used a new development of the polarizable continuum model to study the polarizability of halides at the water/air interface. [Pg.86]

Onsager s SCRF is the simplest method for taking dielectric medium effects into account and more accurate approaches have been developed such as polarizable continuum modes, " continuum dielectric solvation models, - explicit-solvent dynamic-dielectric screening model, - and conductor-like screening model (COSMO). Extensive refinements of the SCRF method (spherical, elliptical, multicavity models) in conjunction with INDO/CIS were introduced by Zerner and co-workers ° as well. [Pg.7]

The simple virtual charge model discussed by Constanciel and Tapia [6] has been developed into an extended generalized Born (EGB) approach. Different approximations have been proposed. Constanciel [40] has analyzed the theoretical basis used as foundations for empirical reaction field approximations through the continuum model to the surrounding medium. Artifacts in the EGB scheme have been clearly identified. The new approximate formulation proposed derives from an exact integral equation of classical electrostatics following a well defined procedure. It is shown there how the wavefunction of solvated species imbedded in cavities formed by interlocking sphere in a polarizable continuum can be computed. [Pg.446]


See other pages where Polarizable continuum medium is mentioned: [Pg.269]    [Pg.46]    [Pg.269]    [Pg.46]    [Pg.36]    [Pg.40]    [Pg.319]    [Pg.336]    [Pg.382]    [Pg.125]    [Pg.162]    [Pg.26]    [Pg.211]    [Pg.313]    [Pg.324]    [Pg.574]    [Pg.421]    [Pg.407]    [Pg.408]    [Pg.427]    [Pg.241]    [Pg.44]    [Pg.4]    [Pg.724]    [Pg.123]    [Pg.285]    [Pg.91]    [Pg.359]    [Pg.8]    [Pg.651]    [Pg.579]    [Pg.467]    [Pg.651]    [Pg.25]    [Pg.131]    [Pg.408]    [Pg.73]    [Pg.117]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Continuum media

Polarizable continuum

© 2024 chempedia.info