Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Point realization

Fixed-point realization, procedures for achieving, 24 444 Fixed points, secondary, 24 442t Fixed-point thermometer calibration,... [Pg.362]

Indium hydroxide, 14 197 Indium mines, 14 192-193 Indium oxide, 5 600 14 195, 196 Indium phosphide, 14 197 Indium plating, for microelectronics, 9 813 Indium-point realization, 24 444 Indium tin oxide (ITO), 7 530 14 196-197 24 805... [Pg.469]

None of the firms at that point realized what a bonanza the war would be for them. [Pg.169]

An experimental teclmique that is usefiil for structure studies of biological macromolecules and other crystals with large unit cells uses neither the broad, white , spectrum characteristic of Lane methods nor a sharp, monocliromatic spectrum, but rather a spectral band with AX/X 20%. Because of its relation to the Lane method, this teclmique is called quasi-Laue. It was believed for many years diat the Lane method was not usefiil for structure studies because reflections of different orders would be superposed on the same point of a film or an image plate. It was realized recently, however, that, if there is a definite minimum wavelengdi in the spectral band, more than 80% of all reflections would contain only a single order. Quasi-Laue methods are now used with both neutrons and x-rays, particularly x-rays from synclirotron sources, which give an intense, white spectrum. [Pg.1381]

Point defects and complexes exliibit metastability when more than one configuration can be realized in a given charge state. For example, neutral interstitial hydrogen is metastable in many semiconductors one configuration has H at a relaxed bond-centred site, bound to the crystal, and the other has H atomic-like at the tetrahedral interstitial site. [Pg.2885]

The electronic spectrum of the radical has been recorded long before a satisfactory theoretical explanation could be provided. It was realized early on that the system should be Jahn-Teller distorted from the perfect pentagon symmetry (D5/, point group). Recently, an extensive experimental study of the high-resolution UV spectrum was reported [76], and analyzed using Jahn-Teller formalism [73],... [Pg.359]

We find it convenient to reverse the historical ordering and to stait with (neatly) exact nonrelativistic vibration-rotation Hamiltonians for triatomic molecules. From the point of view of molecular spectroscopy, the optimal Hamiltonian is that which maximally decouples from each other vibrational and rotational motions (as well different vibrational modes from one another). It is obtained by employing a molecule-bound frame that takes over the rotations of the complete molecule as much as possible. Ideally, the only remaining motion observable in this system would be displacements of the nuclei with respect to one another, that is, molecular vibrations. It is well known, however, that such a program can be realized only approximately by introducing the Eckart conditions [38]. [Pg.502]

Let us first stress that the program of a benchmai k handling of the R-T effect, as presented in Table I, represents an idealization in none of the studies that have been published thus far has it been realized in all points. [Pg.513]

A point in case is provided by the bromination of various monosubstituted benzene derivatives it was realized that substituents with atoms carrying free electron pairs bonded directly to the benzene ring (OH, NH2, etc) gave 0- and p-substituted benzene derivatives. Furthermore, in all cases except of the halogen atoms the reaction rates were higher than with unsubstituted benzene. On the other hand, substituents with double bonds in conjugation with the benzene ring (NO2, CHO, etc.) decreased reaction rates and provided m-substituted benzene derivatives. [Pg.7]

The first thing to notice about these results is that the influence of the micropores reduces the effective diffusion coefficient below the value of the bulk diffusion coefficient for the macropore system. This is also clear in general from the forms of equations (10.44) and (10.48). As increases from zero, corresponding to the introduction of micropores, the variance of the response pulse Increases, and this corresponds to a reduction in the effective diffusion coefficient. The second important point is that the influence of the micropores on the results is quite small-Indeed it seems unlikely that measurements of this type will be able to realize their promise to provide information about diffusion in dead-end pores. [Pg.109]

Huckel realized that his molecular orbital analysis of conjugated systems could be extended beyond neutral hydrocarbons He pointed out that cycloheptatrienyl cation also called tropyhum ion contained a completely conjugated closed shell six tt electron sys tern analogous to that of benzene... [Pg.456]

The new international temperature scale, known as ITS-90, was adopted in September 1989. However, neither the definition of thermodynamic temperature nor the definition of the kelvin or the Celsius temperature scales has changed it is the way in which we are to realize these definitions that has changed. The changes concern the recommended thermometers to be used in different regions of the temperature scale and the list of secondary standard fixed points. The changes in temperature determined using ITS-90 from the previous IPTS-68 are always less than 0.4 K, and almost always less than 0.2 K, over the range 0-1300 K. [Pg.1214]

The logic that leads us to this last result also limits the applicability of the ensuing derivation. Applying the fraction of total lattice sites vacant to the immediate vicinity of the first segment makes the model descriptive of a relatively concentrated solution. This is somewhat novel in itself, since theories of solutions more commonly assume dilute conditions. More to the point, the model is unrealistic for dilute solutions where the site occupancy within the domain of a dissolved polymer coil is greater than that for the solution as a whole. We shall return to a model more appropriate for dilute solutions below. For now we continue with the case of the more concentrated solution, realizing... [Pg.514]

Volatilization. The susceptibility of a herbicide to loss through volatilization has received much attention, due in part to the realization that herbicides in the vapor phase may be transported large distances from the point of application. Volatilization losses can be as high as 80—90% of the total applied herbicide within several days of application. The processes that control the amount of herbicide volatilized are the evaporation of the herbicide from the solution or soHd phase into the air, and dispersal and dilution of the resulting vapor into the atmosphere (250). These processes are influenced by many factors including herbicide application rate, wind velocity, temperature, soil moisture content, and the compound s sorption to soil organic and mineral surfaces. Properties of the herbicide that influence volatility include vapor pressure, water solubility, and chemical stmcture (251). [Pg.48]

The mean time between failures MTBF is used as a measure of system reflabiUty, whereas the mean time to repair MTTR is taken as a measure for maintainabihty. Eor example, a system with an MTBF of 1200 h and a MTTR of 25 h would have an availabihty of 0.98. Furthermore, if only an MTBF of 800 h could be achieved, the same availabihty would be realized if the maintainabihty could be improved to the point where the MTTR was 16 h. Such trade-offs are illustrated in Figure 3, where each curve is at a constant availabihty. [Pg.5]

Evidence of the appHcation of computers and expert systems to instmmental data interpretation is found in the new discipline of chemometrics (qv) where the relationship between data and information sought is explored as a problem of mathematics and statistics (7—10). One of the most useful insights provided by chemometrics is the realization that a cluster of measurements of quantities only remotely related to the actual information sought can be used in combination to determine the information desired by inference. Thus, for example, a combination of viscosity, boiling point, and specific gravity data can be used to a characterize the chemical composition of a mixture of solvents (11). The complexity of such a procedure is accommodated by performing a multivariate data analysis. [Pg.394]

In use, a mantle of ice is frozen onto the outer surface of the thermometer weU. A common way to do this is to fiU the weU with cmshed dry ice until the mantle achieves a good thickness. Descriptions of the technique for doing this are given in several pubHcations and in manufacturers Hterature. The temperature of the water triple point is 0.01°C, or 273.16 K, by definition. In practice, that temperature can be realized in the ceU within 0.00015 K of the definition. In contrast, a bath of ice and water for producing the temperature 0°C is difficult to estabHsh with an accuracy better than 0.002°C. [Pg.397]


See other pages where Point realization is mentioned: [Pg.264]    [Pg.264]    [Pg.252]    [Pg.294]    [Pg.569]    [Pg.882]    [Pg.466]    [Pg.145]    [Pg.2253]    [Pg.2256]    [Pg.477]    [Pg.503]    [Pg.17]    [Pg.231]    [Pg.8]    [Pg.27]    [Pg.30]    [Pg.33]    [Pg.236]    [Pg.158]    [Pg.45]    [Pg.322]    [Pg.194]    [Pg.42]    [Pg.81]    [Pg.124]    [Pg.163]    [Pg.170]    [Pg.28]    [Pg.112]    [Pg.256]    [Pg.397]    [Pg.397]    [Pg.375]    [Pg.1123]   
See also in sourсe #XX -- [ Pg.417 , Pg.420 , Pg.422 ]




SEARCH



Realizability

Realizable

Realization

Realizers

© 2024 chempedia.info