Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plutonium uranium extraction PUREX process

Temporary storage was originally planned for no more than 3 years, until the fuel could be processed at the Plutonium-Uranium Extraction (PUREX) Plant. [Pg.290]

The solvent extraction process that uses TBP solutions to recover plutonium and uranium from irradiated nuclear fuels is called Purex (plutonium uranium extraction). The Purex process provides recovery of more than 99% of both uranium and plutonium with excellent decontamination of both elements from fission products. The Purex process is used worldwide to reprocess spent reactor fuel. During the last several decades, many variations of the Purex process have been developed and demonstrated on a plant scale. [Pg.510]

Baron, P., Boullis, B. 1987. Modeling of uranium/plutonium splitting in PUREX process. I. Chern. E. Symposium, Series No. 103, Extraction 87, June 23-26, Dounreay, UK, p. 323. [Pg.39]

After a few years of storage, the main radioactive heat emitters in HLW are 90Sr and 137Cs. In addition, extremely long-lived actinides—neptunium, plutonium, americium, and curium—should be collected for transmutation in the future. Therefore, different flowsheets can be proposed for waste processing. It is possible to extract each radionuclide in the special extraction (sorption) cycle, for example, uranium and plutonium in the PUREX process, and after that, minor actinides (MAs) by the TRUEX process,4 strontium by the SREX process,5,6 and cesium by sorption7 or extraction.8... [Pg.360]

The centrifugal contactor was first used to reprocess spent nuclear fuel at the SRS in 1966 (Webster et al., 1969). For almost 40 years, this 18-stage 25-cm SRL contactor was used for the extraction and scrub sections (the A-bank) of the PUREX (plutonium-uranium extraction) process at the SRS. Contactor operation stopped when the facility in which they were housed was shut down in 2003. This 18-stage contactor replaced a 24-stage mixer-settler. Mixer-settlers continued to be used for the rest of the processing, as most of the radiation was removed in the A-bank. The ability to... [Pg.603]

It is used in the mining industry to recover metals such as copper and nickel. Parasite plants, based on solvent extraction, are used in the phosphate industry to recover by-product uranium from crude phosphoric acid. The uranium concentration in phosphoric acid is very low but, because of the high volume of phosphoric acid that is produced to meet agricultural needs, considerable uranium can be recovered using solvent extraction. In the nuclear industry [5], solvent extraction is used to purify uranium and plutonium [using the plutonium and uranium recovery by extraction (PUREX) process], zirconium from hafnium, and for many other applications. It is also used in environmental applications to clean soil, say, to remove polychlorinated biphenyls (PCBs), dioxins, pesticides, and other hazardous pollutants. [Pg.711]

This section describes processes for recovering neptunium from irradiated uranium. Neptunium is an example of one of the numerous elements in irradiated fuel that could be recovered as by-products of extraction of uranium and plutonium in the Purex process,... [Pg.537]

Some countries, e.g., France, Japan, Russia, and the United Kingdom have chosen to reprocess their spent nuclear fuel to recycle uranium and plutonium as nuclear fuel and to obtain a high active waste (HAW) firaction that is less radiotoxic than the spent fuel itself. In this process, very high separation factors are necessary. The fission product activity has to be reduced by a factor of > 10 and the separation factor between uranium and plutonium must be at least 2 x lO. All full-scale reprocessing processes are based on solvent extraction, and today the plutonium uranium redox extraction (PUREX) process dominates the market completely. [Pg.2423]

The reprocessing involves separating the fission products from the actinides, and then separating the plntoninm from the uranium. The best known procedure of this type is the PUREX (Plutonium, URanium Extraction) process that is used for recovery of uranium and plutonium from irradiated fuel (see details in Chapter 2). The separated plutonium can be used for the production of nuclear weapons or converted into the oxide form, mixed with nraninm oxide and can be used as MOX nuclear fuel. [Pg.37]

As mentioned in Chapter 1, the PUREX (Plutonium, URanium Extraction) process is most widely used for recovery of uranium and plutonium from irradiated fuel. A schematic of a generic PUREX process is shown in Figure 2.11. [Pg.103]

In the case of a fast neutron spectrum, MOX fuel has been proposed by Oka et al. (2010) with an average concentration of fissile plutonium of approximately 20%. Such fuel can be produced from recycling spent fuel of LWRs with the Plutonium Uranium Redox Extraction (PUREX) process, a mature fuel cycle technology. [Pg.198]

The centerpiece of spent fuel reprocessing is the Purex process (Plutonium-Uranium-Extraction). The solvent is tributyl phosphate in a hydrocarbon diluent, and the process was first used at the Ames Laboratory for uranium purification, then at Oak Ridge National Laboratory for spent fuel. Although other processes were used in earlier days, the Purex... [Pg.1254]

Then the fuel elements are dissolved in 7m HNO3 to give a solution containing U and Pu which, in the widely used plutonium-uranium-reduction, or Purex process, are extracted into 20% tributyl phosphate (TBP) in kerosene leaving most of the fission products... [Pg.1260]

Solvent Extraction. A modified, one-cycle PUREX process is used at Rocky Flats to recover plutonium from miscellaneous Pu-U residues (11). The process utilizes the extraction of uranium (VI) into tributyl phosphate (TBP), leaving plutonium (III) in the raffinate. The plutonium is then sent to ion exchange for... [Pg.372]

Purex [Plutonium and uranium recovery by extraction] A process for the solvent extraction of plutonium from solutions of uranium and fission products, obtained by dissolving spent nuclear fuel elements in nitric acid. The solvent is tri-n-butyl phosphate (TBP) in... [Pg.218]

A primary goal of chemical separation processes in the nuclear industry is to recover actinide isotopes contained in mixtures of fission products. To separate the actinide cations, advantage can be taken of their general chemical properties [18]. The different oxidation states of the actinide ions lead to ions of charges from +1 (e.g., NpOj) to +4 (e.g., Pu" " ) (see Fig. 12.1), which allows the design of processes based on oxidation reduction reactions. In the Purex process, for example, uranium is separated from plutonium by reducing extractable Pu(IV) to nonextractable Pu(III). Under these conditions, U(VI) (as U02 ) and also U(IV) (as if present, remain in the... [Pg.511]

The Purex process, ie, plutonium uranium reduction extraction, employs an organic phase consisting of 30 wt % TBP dissolved in a kerosene-type diluent. Purification and separation of U and Pu is achieved because of the extractability of U02+2 and Pu(IV) nitrates by TBP and the relative inextractability of Pu(III) and most fission product nitrates. Plutonium nitrate and U02(N03)2 are extracted into the organic phase by the formation of compounds, eg, Pu(N03)4 -2TBP. The plutonium is reduced to Pu(III) by treatment with ferrous sulfamate, hydrazine, or hydroxylamine and is transferred to the aqueous phase U remains in the organic phase. Further purification is achieved by oxidation of Pu(III) to Pu(IV) and re-extraction with TBP. The plutonium is transferred to an aqueous product. Plutonium recovery from the Purex process is ca 99.9 wt % (128). Decontamination factors are 106 — 10s (97,126,129). A flow sheet of the Purex process is shown in Figure 7. [Pg.201]

The Purex process is used for almost all fuel reprocessing today. Irradiated UO2 fuel is dissolved in HNO3 with the uranium being oxidized to U02(N03)2 and the plutonium oxidized to Pu(NC>3)4. A solution of TBP in a high-boiling hydrocarbon, such as n-dodecane, is used to selectively extract the hexavalent U02(N03)2 and the tetravalent Pu(NC>3)4 from the other actinides and fission products in the aqueous phase. The overall reactions are... [Pg.481]

The uranium and thorium ore concentrates received by fuel fabrication plants still contain a variety of impurities, some of which may be quite effective neutron absorbers. Such impurities must be almost completely removed if they are not seriously to impair reactor performance. The thermal neutron capture cross sections of the more important contaminants, along with some typical maximum concentrations acceptable for fuel fabrication, are given in Table 9. The removal of these unwanted elements may be effected either by precipitation and fractional crystallization methods, or by solvent extraction. The former methods have been historically important but have now been superseded by solvent extraction with TBP. The thorium or uranium salts so produced are then of sufficient purity to be accepted for fuel preparation or uranium enrichment. Solvent extraction by TBP also forms the basis of the Purex process for separating uranium and plutonium, and the Thorex process for separating uranium and thorium, in irradiated fuels. These processes and the principles of solvent extraction are described in more detail in Section 65.2.4, but the chemistry of U022+ and Th4+ extraction by TBP is considered here. [Pg.919]

In order to separate the uranium and plutonium the Pu022+ was reduced to Pu3+, which was not extracted by MIBK and was thus held in the aqueous phase. The choice of a reducing agent for plutonium is rather important, and is discussed in more detail below in relation to the Purex process. In the Redox process, 0.05 M aqueous iron(II) sulfamate salted with 1.3MA1(N03)3 was used, the reduction of Pu022+ by Fe2"1" proceeding according to equation (156). The products... [Pg.938]

In the second-generation reprocessing, the applied separation technology has been the PUREX process, an acronym of Plutonium Uranium Reduction Extraction (4) based on a liquid-liquid extraction with tri-n-butyl phosphate (TBP) in //-paraffin diluent, which selectively recovers Pu and U on an industrial scale. [Pg.2]

Reprocessing is based on liquid-liquid extraction for the recovery of uranium and plutonium from used nuclear fuel (PUREX process). The spent fuel is first dissolved in nitric acid. After the dissolution step and the removal of fine insoluble solids, an organic solvent composed of 30% TriButyl Phosphate (TBP) in TetraPropylene Hydrogenated (TPH) or Isopar L is used to recover both uranium and plutonium the great majority of fission products remain in the aqueous nitric acid phase. Once separated from the fission products, back-extraction combined with a reduction of Pu(I V) to Pu(III) allows plutonium to be separated from uranium these two compounds can be recycled.2... [Pg.198]


See other pages where Plutonium uranium extraction PUREX process is mentioned: [Pg.382]    [Pg.382]    [Pg.971]    [Pg.5]    [Pg.695]    [Pg.2813]    [Pg.388]    [Pg.257]    [Pg.80]    [Pg.201]    [Pg.529]    [Pg.114]    [Pg.108]    [Pg.529]    [Pg.709]    [Pg.926]    [Pg.928]    [Pg.945]    [Pg.951]    [Pg.951]    [Pg.960]    [Pg.72]    [Pg.360]   


SEARCH



Extraction Purex

Extraction process

Extractive processes

PUREX process uranium extraction

Plutonium Purex process

Plutonium processing

Plutonium processing PUREX process

Plutonium processing processes

Processing extraction

Purex

Uranium Purex process

Uranium extraction

Uranium plutonium

Uranium process

Uranium processing

© 2024 chempedia.info