Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum Filter

Tail-gas Preheater A shell and tube-type exchanger. It takes reaction gases leaving the platinum filter at about 315°C and 1020 kPa, and subsequently reduces their temperature to 185°C. The... [Pg.57]

Dry (prepared by the action of concentrated nitric acid on A%Og) is introduced into a platinum dish containing h%hly concentrated fluoroboric acid (see p. 221) until the dish contents thicken almost completely to a thick slurry and no longer absorb I Og. The translucent crystalline slurry is suction-filtered on a platinum filter crucible and the remainii liquor separated by pressing. The mother liquor is concentrated in the platinum dish until the appearance of a pronounced white vapor, following which more 1 0 is introduced. In this way additional crystals are obtained. [Pg.224]

When an amine, or a solution of its hydrochloride, is added to an aqueous solution of chloroplatinic acid, a salt of the base with the cliloroplatinic acid, of general formula BjiHiPtCle (where B is one molecule of the base) is formed and usually crystallises out, for these chloroplatinates hai e normally a rather low solubility in cold water. The chloroplatinate can be filtered off, dried, and then analysed by direct ignition, when only the metallic platinum ultimately remains. Knowing the percentage of platinum in the chloroplatinate, the molecular weight of the latter, and hence of the constituent base, can readily be calculated. [Pg.449]

Alternatively, the bulk of the platinum in the aqueous residues can be precipitated by ammonium chloride as ammonium chloroplatinate, the latter filtered off, and the filtrate evaporated to dryness. The chloroplatinate and the residue from the evaporation are then ignited. [Pg.449]

Method 1. From ammonium chloroplatinate. Place 3 0 g. of ammonium chloroplatinate and 30 g. of A.R. sodium nitrate (1) in Pyrex beaker or porcelain casserole and heat gently at first until the rapid evolution of gas slackens, and then more strongly until a temperature of about 300° is reached. This operation occupies about 15 minutes, and there is no spattering. Maintain the fluid mass at 500-530° for 30 minutes, and allow the mixture to cool. Treat the sohd mass with 50 ml. of water. The brown precipitate of platinum oxide (PtOj.HjO) settles to the bottom. Wash it once or twice by decantation, filter througha hardened filter paper on a Gooch crucible, and wash on the filter until practically free from nitrates. Stop the washing process immediately the precipitate tends to become colloidal (2) traces of sodium nitrate do not affect the efficiency of the catalyst. Dry the oxide in a desiccator, and weigh out portions of the dried material as required. [Pg.470]

Method- 3. From platinum metal or platinum residues. Dissolve the platinum metal or platinum residues in aqua regia, evaporate just to dryness several times with concentrated hydrochloric acid, dissolve the final residue in a httle water and precipitate as ammonium chloro-platinate with excess of saturated ammonium chloride solution. Filter and dry the precipitate at 100°. Then proceed according to Method 1. [Pg.471]

It is advisable to test a small portion of the filtrate for platinum by acidifying with hydrochloric acid and adding a few drops of stannous chloride solution a yellow or brown colour develops according to the quantity of platinum pVesent. The yellow colour is soluble in ether, thus rendering the t t more sensitive. If platinum is found, treat the filtrate with excess of formaldehyde and sodium iQrdroxide solution and heat,- platinum black septarates on standing and may be filtered and worked up with other platinum residues (see Method 3). [Pg.471]

Use 01 g. of the platinum oxide catalyst and 11 4 g, of pure cinnamic acid dissolved in 100 ml. of absolute alcohol. The theoretical volume of hydrogen is absorbed after 7-8 hours. Filter off the platinum, and evaporate the filtrate on a water bath. The resulting oil solidifies on cooling to a colourless acid, m.p. 47-48° (11-2 g.). Upon recrystallisation from light petroleum, b.p. 60-80°, pure dihydrocinnamic acid, m.p. 48-49°, is obtained. [Pg.474]

Place a solution of 10 -4 g. of benzalacetophenone, m.p. 57° (Section IV,130) in 75 ml. of pure ethyl acetate (Section 11,47,15) in the reaction bottle of the catalytic hydrogenation apparatus and add 0 2 g. of Adams platinum oxide catalyst (for full experimental details, see Section 111,150). Displace the air with hydrogen, and shake the mixture with hydrogen until 0 05 mol is absorbed (10-25 minutes). Filter oflF the platinum, and remove the ethyl acetate by distillation. RecrystaUise the residual benzylacetophenone from about 12 ml. of alcohol. The yield of pure product, m.p. 73°, is 9 g. [Pg.734]

Method A. Cool a solution of the nitrate-free dichloride, prepared from or equivalent to 5 0 g. of palladium or platinum, in 50 ml. of water and 5 ml. of concentrated hydrochloric acid in a freezing mixture, and treat it with 50 ml. of formahn (40 per cent, formaldehyde) and 11 g. of the carrier (charcoal or asbestos). Stir the mixture mechanically and add a solution of 50 g. of potassium hydroxide in 50 ml. of water, keeping the temperature below 5°. When the addition is complete, raise the temperature to 60° for 15 minutes. Wash the catalyst thoroughly by decantation with water and finally with dilute acetic acid, collect on a suction filter, and wash with hot water until free from chloride or alkali. Dry at 100° and store in a desiccator. [Pg.948]

In one patent (31), a filtered, heated mixture of air, methane, and ammonia ia a volume ratio of 5 1 1 was passed over a 90% platinum—10% rhodium gauze catalyst at 200 kPa (2 atm). The unreacted ammonia was absorbed from the off-gas ia a phosphate solution that was subsequently stripped and refined to 90% ammonia—10% water and recycled to the converter. The yield of hydrogen cyanide from ammonia was about 80%. On the basis of these data, the converter off-gas mol % composition can be estimated nitrogen, 49.9% water, 21.7% hydrogen, 13.5% hydrogen cyanide, 8.1% carbon monoxide, 3.7% carbon dioxide, 0.2% methane, 0.6% and ammonia, 2.3%. [Pg.377]

Hydrofluoric acid [7664-39-3] M 20.0, b 112.2"(aq azeotrope, 38.2% HF), d 1.15 (47-53% HF), pK 3.21. Freed from lead (Pb ca 0.002ppm) by co-precipitation with Srp2, by addition of lOmL of 10% SrCl2 soln per kilogram of the cone acid. After the ppte has settled, the supernatant is decanted through a filter in a hard-rubber or paraffin lined-glass vessel [Rosenqvist Am J Sci 240 358 1942. Pure aqueous HF solutions (up to 25M) can be prepared by isothermal distn in polyethylene, polypropylene or platinum apparatus [Kwestroo and Visser Analyst 90 297 7965]. HIGHLY TOXIC. [Pg.429]

Filter on the porcelain funnel with the pump and wash three or four times with small quantities of cold water. Press the piecipitate down and dry on a porous plate in the vacuum-desiccator. When thoroughly dry, weigh out about 0-5 to i gram of the compound into a porcelain or platinum crucible, and heat gently with the lid on, and then moie strongly until the organic matter is completely burnt away. Cool the crucible in the desic-ca.or and weigh. [Pg.46]

Dicyclopentadiene (50 g, 0.38 mole) is dissolved in 100 ml of anhydrous ether. Platinum oxide (0.25 g) is added, and the mixture is hydrogenated in a Parr apparatus at an initial pressure of 50 psi. Initially the reaction mixture becomes warm. The absorption of 2 mole equivalents of hydrogen takes 4-6 hours. The mixture is filtered by suction to remove the catalyst, and the filtrate is distilled at atmospheric pressure through a short fractionating column. [Pg.39]

A solution of 50 g of 1 -azabicyclo [2.2.2] -3-octanone hydrochloride in 200 cc of water was hydrogenated at room temperature and 50 atm pressure with 1 g of platinum oxide as catalyst. After the calculated amount of hydrogen had been absorbed, the mixture was filtered and concentrated in vacuo to dryness. The residual product was recrystallized from a mixture of methanol and acetone and formed prisms melting above 300°C. It was identified as 1 -ezabicy-clo[2.2.2] -3-octanol hydrochloride. [Pg.8]

A mixture of 26 g (0.1 mol) of 0 -(4-pyridyl)-benzhydrol, 1.5 g of platinum oxide, and 250 ml of glacial acetic acid is shaken at 50°-60°C under hydrogen at a pressure of 40-50 Ib/in. The hydrogenation is complete in 2 to 3 hours. The solution is filtered and the filtrate evap-rated under reduced pressure. The residue is dissolved in a mixture of equal parts of methanol and butanone and 0.1 mol of concentrated hydrochloric acid is added. The mixture is cooled and filtered to give about 30 g of 0 -(4-piperldyl)-benzhydrol hydrochloride, MP 283°-285°C, as a white, crystalline substance. [Pg.114]

The product (12.1 mg) obtained in the above step was dissoived in 0.3 mi of water, to which was then added a catalytic quantity (about 5 mg) of platinum oxide. Hydrogenation was made with hydrogen gas at a pressure of 35 kg/cm for 1.5 hours. The reaction solution was filtered to remove the catalyst, and the filtrate was concentrated to dryness, giving the desired product 3, 4 -dideoxykanamycin B in the form of its monocarbonate. The yield was 11.5 mg (95%). -f 110° (c 1, water). The overall yield of 3, 4 -dideoxykanamycin B... [Pg.470]


See other pages where Platinum Filter is mentioned: [Pg.53]    [Pg.57]    [Pg.126]    [Pg.225]    [Pg.268]    [Pg.268]    [Pg.268]    [Pg.269]    [Pg.354]    [Pg.219]    [Pg.616]    [Pg.53]    [Pg.57]    [Pg.126]    [Pg.225]    [Pg.268]    [Pg.268]    [Pg.268]    [Pg.269]    [Pg.354]    [Pg.219]    [Pg.616]    [Pg.114]    [Pg.449]    [Pg.449]    [Pg.1001]    [Pg.245]    [Pg.258]    [Pg.42]    [Pg.38]    [Pg.427]    [Pg.452]    [Pg.453]    [Pg.496]    [Pg.45]    [Pg.124]    [Pg.54]    [Pg.136]    [Pg.139]    [Pg.1025]    [Pg.3]    [Pg.25]    [Pg.463]   


SEARCH



© 2024 chempedia.info