Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Apparatus for catalytic hydrogenations

The catalyst is previously prepared in an apparatus for catalytic hydrogenation, in which are placed 0.5 g. of palladous chloride, 3.0 g. of Norite, and 20 ml. of distilled water. The bottle is swept out with hydrogen and then shaken with hydrogen for 2-3 hours at 2-3 atmospheres (40 lb.) pressure. The palladium on carbon is collected on a Biichner funnel, washed with five 50-ml. portions of distilled water, then with five 50-ml. portions of 95% ethanol, and finally twice with ether. Upon drying, about 3 g. of the catalyst is obtained. It is stored in a vacuum desiccator over solid sodium hydroxide. If the reduction of the chloro-lepidine does not proceed normally, the used catalyst should be removed by suction filtration and a fresh 3-g. portion of catalyst added. Failure of the reduction step is usually due to an inactive catalyst or to impurities in the acetic acid or chlorolepidine. The palladium catalysts, prepared as described elsewhere in this volume, are presumably also satisfactory for the reduction of 2-chlorolepidine (p. 77). [Pg.46]

D. 2,3-Diamino pyridine (Note 12). In an apparatus for catalytic hydrogenation (Note 13) 56.4 g. (0.3 mole) of 2,3-diamino-5-bromopyridine suspended in 300 ml. of 4% sodium hydroxide solution is shaken with hydrogen in the presence of 1.0 g. of 5% palladized strontium carbonate (Note 14). When absorption of hydrogen is completed, the catalyst is removed by filtration, and, after saturation with potassium carbonate (about 330 g. is required), the resulting slushy mixture is extracted continuously with ether until all the precipitate completely disappears (usually about 18 hours, but this depends on the efficiency of the extraction apparatus). The ether is removed by distillation, and the residue of crude 2,3-diaminopyridine is recrystallized from benzene (about 600 ml. is required) using 3 g. of activated charcoal and filtering rapidly through a preheated Buchner funnel. The yield of 2,3-diaminopyridine, obtained as colorless needles, m.p. 115-116°, pKa 6.84, is 25.5-28.0 g. (78-86%) (Note 15). [Pg.19]

Fig. 29.—Arrangement of apparatus for catalytic synthesis of hydrogen bromide. Fig. 29.—Arrangement of apparatus for catalytic synthesis of hydrogen bromide.
Heterogeneously catalyzed hydrogenation reactions can be run in batch, semibatch, or continous reactors. Our catalytic studies, which were carried out in liquid, near-critical, or supercritical C02 and/or propane mixtures, were run continuously in oil-heated (200 °C, 20.0 MPa) or electrically heated flow reactors (400 °C, 40.0 MPa) using supported precious-metal fixed-bed catalysts. The laboratory-scale apparatus for catalytic reactions in supercritical fluids is shown in Figure 14.2. This laboratory-scale apparatus can perform in situ countercurrent extraction prior to the hydrogenation step in order to purify the raw materials employed in our experiments. Typically, the following reaction conditions were used in our supercritical fluid hydrogenation experiments catalyst volume, 2-30 mL total pressure, 2.5-20.0 MPa reactor temperature, 40-190 °C carbon dioxide flow, 50-200 L/h ... [Pg.230]

Place a solution of 10 -4 g. of benzalacetophenone, m.p. 57° (Section IV,130) in 75 ml. of pure ethyl acetate (Section 11,47,15) in the reaction bottle of the catalytic hydrogenation apparatus and add 0 2 g. of Adams platinum oxide catalyst (for full experimental details, see Section 111,150). Displace the air with hydrogen, and shake the mixture with hydrogen until 0 05 mol is absorbed (10-25 minutes). Filter oflF the platinum, and remove the ethyl acetate by distillation. RecrystaUise the residual benzylacetophenone from about 12 ml. of alcohol. The yield of pure product, m.p. 73°, is 9 g. [Pg.734]

The technique of catalytic hydrogenation can be applied almost universally to unsaturated systems, and therein lies its chief advantage (7). By appropriate selection of catalyst, pressure, and temperature, a remarkable variety of substrates can be made to undergo hydrogenation, many of them under hydrogen pressure not exceeding 50 psi (see Appendix 3 for description and use of low-pressure hydrogenation apparatus). [Pg.39]

A chemical reactor is an apparatus of any geometric configuration in which a chemical reaction takes place. Depending on the mode of operation, process conditions, and properties of the reaction mixture, reactors can differ from each other significantly. An apparatus for the continuous catalytic synthesis of ammonia from hydrogen and nitrogen, operated at 720 K and 300 bar is completely different from a batch fermenter for the manufacture of ethanol from starch operated at 300 K and 1 bar. The mode of operation, process conditions, and physicochemical properties of the reaction mixture will be decisive in the selection of the shape and size of the reactor. [Pg.257]

DSC tests show a substantial reduction of the hydrogen desorption onset (red circles) (T J and peak (T ) temperatures due to the catalytic effects of n-Ni as compared to the hydrogen desorption from pure MgH also milled for 15 min. (Fig. 2.57). It is interesting to note that there is no measurable difference between spherical (Fig. 2.57a) and fdamentary (Fig. 2.57b) n-Ni, although there seems to be some effect of SSA. We also conducted desorption tests in a Sieverts apparatus for each SSA and obtained kinetic curves (Fig. 2.58), from which the rate constant, k, in the JMAK equation was calculated. The enhancement of desorption rate by n-Ni is clearly seen. At the temperature of 275°C, which is close to the equilibrium at atmospheric pressure (0.1 MPa), all samples desorb from 4 to 5.5 wt.% within 2,000 s. [Pg.164]

B. Diethyl cis-hexahydrophthalate. The reaction is carried out in a low-pressure catalytic hydrogenation apparatus. In a 500-ml. Pyrex centrifuge bottle are placed 0.5 g. of Adams platinum oxide catalyst (Note 5) and 20 ml. of commercial absolute ethanol (Note 6). The bottle is connected to a calibrated low-pressure hydrogen tank and alternately evacuated and filled with hydrogen twice. Hydrogen is then admitted to the system until the pressure is 1-2 atmospheres (15-30 lb.), and the bottle is shaken for 20-30 minutes to reduce the platinum oxide. The shaker is stopped, the bottle is evacuated, and air is admitted. Two hun-... [Pg.16]

C, and the excess hydride killed by the addition of 1.0 mL EtOAc, followed by 2.3 mL H20. The reaction mixture was filtered free of solids under a N2 atmosphere, washed with THF, and the filtrate and washings combined and stripped of solvent under vacuum. The residue was distilled in a KugelRohr apparatus and the solid distillate recrystallized from /hexane to give 0.24 g (52%) 3-[2-(diethylamino)ethyl]-4-indolol (4-HO-DET) as white crystals with a mp of 103-104 °C. The product discolored quickly in the presence of air, and was best stored under an inert atmosphere at -30 °C. Conversion to the phosphate ester was achieved by reaction of the sodium salt of 3-[2-(diethylamino)ethyl]-4-indolol with dibenzylchlorophosphonate, followed by the reductive removal of the benzyl groups with catalytic hydrogenation, as described for psilocybin. [Pg.109]


See other pages where Apparatus for catalytic hydrogenations is mentioned: [Pg.89]    [Pg.89]    [Pg.89]    [Pg.89]    [Pg.45]    [Pg.443]    [Pg.455]    [Pg.1]    [Pg.40]    [Pg.95]    [Pg.78]    [Pg.79]    [Pg.323]    [Pg.78]    [Pg.79]    [Pg.51]    [Pg.88]    [Pg.38]    [Pg.567]    [Pg.260]    [Pg.150]    [Pg.338]    [Pg.198]    [Pg.1]    [Pg.167]    [Pg.203]    [Pg.179]    [Pg.846]    [Pg.97]    [Pg.237]    [Pg.2388]    [Pg.150]    [Pg.97]    [Pg.221]   
See also in sourсe #XX -- [ Pg.16 , Pg.17 , Pg.45 , Pg.79 ]

See also in sourсe #XX -- [ Pg.16 , Pg.79 ]

See also in sourсe #XX -- [ Pg.16 , Pg.79 ]

See also in sourсe #XX -- [ Pg.17 , Pg.18 , Pg.19 , Pg.45 , Pg.48 , Pg.79 ]




SEARCH



Apparatus for

Hydrogenation apparatus

Hydrogenation apparatus, for

© 2024 chempedia.info