Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum constants

The fixed points in the lTS-90 are given in Tabie 11.39. Platinum resistance thermometers are recommended for use between 14 K and 1235 K (the freezing point of silver), calibrated against the fixed points. Below 14 K either the vapor pressure of helium or a constant-volume gas thermometer is to be used. Above 1235 K radiometry is to be used in conjunction with the Planck radiation law,... [Pg.1215]

The formation of acids from heteroatoms creates a corrosion problem. At the working temperatures, stainless steels are easily corroded by the acids. Even platinum and gold are not immune to corrosion. One solution is to add sodium hydroxide to the reactant mixture to neutralize the acids as they form. However, because the dielectric constant of water is low at the temperatures and pressure in use, the salts formed have low solubiHty at the supercritical temperatures and tend to precipitate and plug reaction tubes. Most hydrothermal processing is oxidation, and has been called supercritical water oxidation. [Pg.369]

The ITS-90 has its lowest point at 0.65 K and extends upward without specified limit. A number of values assigned to fixed points differ from those of the immediately previous scale, IPTS-68. In addition, the standard platinum resistance thermometer (SPRC) is specified as the interpolation standard from 13.8033 K to 961.78°C, and the interpolation standard above 961.78°C is a radiation thermometer based on Planck s radiation law. Between 0.65 and 13.8033 K interpolation of the scale rehes upon vapor pressure and constant-volume gas thermometry. The standard thermocouple, which in previous scales had a range between the upper end of the SPRT range and the lower end of the radiation thermometer range, has been deleted. [Pg.399]

The Kad Fischer jack on the back of most pH meters, used to monitor Kad Fischer titrations, suppHes a constant regulated current to the cell, which can consist of two identical (platinum) working electrodes. The voltammograms shown in Figure 9 illustrate the essential features of this technique. The initial potential difference, AH, is small because both redox forms of the sample coexist to depolarize the electrodes. The sample corresponds to the wave on the right-hand (cathodic) side of each figure and is therefore easily oxidized. The titrant is represented by the wave on the left-hand (anodic) side and is therefore easily reduced. Halfway to the end point the potential difference,, remains small, but at the end point the potential difference,... [Pg.57]

The bot-wire anemometer consists essentially of an electrically heated fine wire (generally platinum) exposed to the gas stream whose velocity is being measured. An increase in fluid velocity, other things being equal, increases the rate of heat flow from the wire to the gas, thereby tending to cool the wire and alter its electrical resistance. In a constant-current anemometer, gas velocity is determined by measuring the resulting wire resistance in the constant-resistance type, gas velocity is determined from the current required to maintain the wire temperature, and thus the resistance, constant. The difference in the two types is primarily in the electric circmts and instruments employed. [Pg.888]

Significant distinction in rate constants of MDASA and TPASA oxidation reactions by periodate ions at the presence of individual catalysts allow to use them for differential determination of platinum metals in complex mixtures. The range of concentration rations iridium (IV) rhodium (III) is determined where sinergetic effect of concentration of one catalyst on the rate of oxidation MDASA and TPASA by periodate ions at the presence of another is not observed. Optimal conditions of iridium (IV) and rhodium (III) determination are established at theirs simultaneous presence. Indicative oxidation reactions of MDASA and TPASA are applied to differential determination of iridium (IV) and rhodium (III) in artificial mixtures and a complex industrial sample by the method of the proportional equations. [Pg.37]

Stratifying water systems for selective extraction of thiocyanate complexes of platinum metals have been proposed. The extraction degree of mthenium(III) by ethyl and isopropyl alcohols, acetone, polyethylene glycol in optimum conditions amounts to 95-100%. By the help of electronic methods, IR-spectroscopy, equilibrium shift the extractive mechanism has been proposed and stmctures of extractable compounds, which contain single anddouble-chai-ged acidocomplexes [Rh(SCN)J-, [Ru(SCN)J, [Ru(SCN)J -have been determined. Constants of extraction for associates investigated have been calculated. [Pg.257]

More than 200 ores are known to contain cobalt but only a few are of commercial value. The more important are arsenides and sulfides such as smaltite, C0AS2, cobaltite (or cobalt glance), CoAsS, and linnaeite, C03S4. These are invariably associated with nickel, and often also with copper and lead, and it is usually obtained as a byproduct or coproduct in the recovery of these metals. The world s major sources of cobalt are the African continent and Canada with smaller reserves in Australia and the former USSR. All the platinum metals are generally associated with each other and rhodium and iridium therefore occur wherever the other platinum metals are found. However, the relative proportions of the individual metals are by no means constant and the more important sources of rhodium are the nickel-copper-sulfide ores found in South Africa and in Sudbury, Canada, which contain about 0.1% Rh. Iridium is usually obtained from native osmiridium (Ir 50%) or iridiosmium (Ir 70%) found chiefiy in Alaska as well as South Africa. [Pg.1114]

The above generalities apply particularly to palladium. Hydrogenation over platinum or rhodium are far less sensitive to the influence of steric crowding. Reduction of 1-t-butylnaphthalene over platinum, rhodium, and palladium resulted in values of /ci//c2 of 0.42, 0.71, and 0.024, respectively. Also, unlike mononuclear aromatics, palladium reduces substituted naphthalenes at substantially higher rates than does either platinum or rhodium. For example, the rate constants, k x 10 in mol sec" g catalyst", in acetic acid at 50 C and 1 atm, were (for 1,8-diisopropylnaphthalene) Pd (142), Pt(l8.4), and Rh(7.1)(25). [Pg.120]

It is somewhat less corrosion resistant than tantalum, and like tantalum suffers from hydrogen embrittlement if it is made cathodic by a galvanic couple or an external e.m.f., or is exposed to hot hydrogen gas. The metal anodises in acid electrolytes to form an anodic oxide film which has a high dielectric constant, and a high anodic breakdown potential. This latter property coupled with good electrical conductivity has led to the use of niobium as a substrate for platinum-group metals in impressed-current cathodic-protection anodes. [Pg.852]

No. 41 or 541 filter paper. Wash the precipitate first with warm, dilute hydrochloric acid (approx. 0.5M), and then with hot water until free from chlorides. Pour the filtrate and washings into the original dish, evaporate to dryness on the steam bath, and heat in an air oven at 100-110 °C for 1 hour. Moisten the residue with 5 mL concentrated hydrochloric acid, add 75 mL water, warm to extract soluble salts, and filter through a fresh, but smaller, filter paper. Wash with warm dilute hydrochloric acid (approx. 0.1M), and finally with a little hot water. Fold up the moist filters, and place them in a weighed platinum crucible. Dry the paper with a small flame, char the paper, and burn off the carbon over a low flame take care that none of the fine powder is blown away. When all the carbon has been oxidised, cover the crucible, and heat for an hour at the full temperature of a Meker-type burner in order to complete the dehydration. Allow to cool in a desiccator, and weigh. Repeat the ignition, etc., until the weight is constant. [Pg.487]

The essential requirements for a constant-current electrolytic determination — a source of direct current (which may be a mains-operated unit producing a rectified smoothed output of 3-15 volts), a variable resistance, an ammeter (reading up to 10 amperes), a voltmeter (10-15 volts), and a pair of platinum electrodes — can be readily assembled in most laboratories, but if a number of determinations are to be performed a commercial electrolysis unit will doubtless be preferred. This will be equipped with rectifier, a motor drive for a paddle-type stirrer or with a magnetic stirrer, and a hotplate. [Pg.511]

A mercury cathode finds widespread application for separations by constant current electrolysis. The most important use is the separation of the alkali and alkaline-earth metals, Al, Be, Mg, Ta, V, Zr, W, U, and the lanthanides from such elements as Fe, Cr, Ni, Co, Zn, Mo, Cd, Cu, Sn, Bi, Ag, Ge, Pd, Pt, Au, Rh, Ir, and Tl, which can, under suitable conditions, be deposited on a mercury cathode. The method is therefore of particular value for the determination of Al, etc., in steels and alloys it is also applied in the separation of iron from such elements as titanium, vanadium, and uranium. In an uncontrolled constant-current electrolysis in an acid medium the cathode potential is limited by the potential at which hydrogen ion is reduced the overpotential of hydrogen on mercury is high (about 0.8 volt), and consequently more metals are deposited from an acid solution at a mercury cathode than with a platinum cathode.10... [Pg.513]

Constant current procedure. With the exception of lead, which from nitric acid solutions is deposited on the anode as Pb02, the ions listed in Table 12.1 are deposited as metal on the cathode. With the ions indicated by an asterisk in Table 12.1, it is advisable to use a platinum cathode which has been plated with copper before the initial weighing this is because, in these cases, the deposited metals cannot be readily distinguished on a platinum surface and it is difficult to be certain when deposition is complete. [Pg.516]

To measure the conductivity of a solution it is placed in a cell carrying a pair of platinum electrodes which are firmly fixed in position. It is usually very difficult to measure precisely the area of the electrodes and their distance apart, and so if accurate conductivity values are to be determined, the cell constant must be evaluated by calibration with a solution of accurately known conductivity,... [Pg.520]

The principle of coulometric titration. This involves the generation of a titrant by electrolysis and may be illustrated by reference to the titration of iron(II) with electro-generated cerium(IV), A large excess of Ce(III) is added to the solution containing the Fe(II) ion in the presence of, say IM sulphuric acid. Consider what happens at a platinum anode when a solution containing Fe(II) ions alone is electrolysed at constant current. Initially the reaction... [Pg.536]


See other pages where Platinum constants is mentioned: [Pg.21]    [Pg.294]    [Pg.602]    [Pg.1908]    [Pg.501]    [Pg.258]    [Pg.502]    [Pg.66]    [Pg.309]    [Pg.759]    [Pg.2430]    [Pg.354]    [Pg.139]    [Pg.496]    [Pg.429]    [Pg.1074]    [Pg.22]    [Pg.99]    [Pg.249]    [Pg.219]    [Pg.13]    [Pg.121]    [Pg.450]    [Pg.454]    [Pg.464]    [Pg.469]    [Pg.472]    [Pg.521]    [Pg.524]    [Pg.539]    [Pg.584]    [Pg.595]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Platinum complexes constants

© 2024 chempedia.info