Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum cobalt carbonyls

Reduction of unsaturated aldehydes seems more influenced by the catalyst than is that of unsaturated ketones, probably because of the less hindered nature of the aldehydic function. A variety of special catalysts, such as unsupported (96), or supported (SJ) platinum-iron-zinc, plalinum-nickel-iron (47), platinum-cobalt (90), nickel-cobalt-iron (42-44), osmium (<55), rhenium heptoxide (74), or iridium-on-carbon (49), have been developed for selective hydrogenation of the carbonyl group in unsaturated aldehydes. None of these catalysts appears to reduce an a,/3-unsaturated ketonic carbonyl selectively. [Pg.71]

The metal hydride mechanism was first described for the cobalt-carbonyl-catalyzed ester formation by analogy with hydroformylation.152 It was later adapted to carboxylation processes catalyzed by palladium136 153 154 and platinum complexes.137 As in the hydroformylation mechanism, the olefin inserts itself into the... [Pg.382]

Carbon monoxide has been found to be surprisingly reactive toward the metals in Group VIII, in both their oxidized and unoxidized states. A sizable number of compounds exist in which one or more CO molecules are attached to a metal atom through the carbon typical of these are nickel tetracarbonyl, Ni(CO)4, iron pentacarbonyl, Fe(CO) cobalt carbonyl hydride, Co(CO)4H platinum carbonyl chloride, Pt(CO)2Cl2 and more complicated molecules such as Co4(CO)i2. [Pg.157]

The selective production of methanol and of ethanol by carbon monoxide hydrogenation involving pyrolysed rhodium carbonyl clusters supported on basic or amphoteric oxides, respectively, has been discussed. The nature of the support clearly plays the major role in influencing the ratio of oxygenated products to hydrocarbon products, whereas the nuclearity and charge of the starting rhodium cluster compound are of minor importance. Ichikawa has now extended this work to a study of (CO 4- Hj) reactions in the presence of alkenes and to reactions over catalysts derived from platinum and iridium clusters. Rhodium, bimetallic Rh-Co, and cobalt carbonyl clusters supported on zinc oxide and other basic oxides are active catalysts for the hydro-formylation of ethene and propene at one atm and 90-180°C. Various rhodium carbonyl cluster precursors have been used catalytic activities at about 160vary in the order Rh4(CO)i2 > Rh6(CO)ig > [Rh7(CO)i6] >... [Pg.89]

Hydrocarboxylation is the formal addition of hydrogen and a carboxylic group to double or triple bonds to form carboxylic acids or their derivatives. It is achieved by transition metal catalyzed conversion of unsaturated substrates with carbon monoxide in the presence of water, alcohols, or other acidic reagents. Ester formation is also called hydroesterification or hydrocarb(o)alkoxylation . The transition metal catalyst precursors are nickel, iron or cobalt carbonyls or salts of nickel, iron, cobalt, rhodium, palladium, platinum, or other metals4 5. [Pg.372]

Synthesis of CoPtj Magnetic Alloy Nanocrystals The synthetic approach developed for the preparation of elemental nanopartides can be further extended to intermetallic compounds. Thus, high-quality CoPt3 nanocrystals can be synthesized via the simultaneous reduction of platinum acetylacetonate and the thermal decomposition of cobalt carbonyl in the presence of 1-adamantanecarboxylic add (ACA) and hexadecylamine (HDA) as stabilizing agents [65]. [Pg.247]

The preparation of core-shell -type magnetic nanopartides was reported [92,93] as a two-step synthesis in which nanopartides of one metal served as the seeds for growth of the shell from another metal. Thus, the reduction of platinum salts in the presence of Co nanopartides would allow the preparation of air-stable CocorePtsheii nanopartides [92]. The thermal decomposition of cobalt carbonyl in the presence of silver salt led to the formation of AgcoreCOgheii nanopartides [93]. The syntheses of these multicomponent magnetic nanostructures are discussed in Section 3.3.2.4. [Pg.259]

Carbonate formation from an alcohol and carbon monoxide is known to take place in the presence of a number of metal and non-metal redox couples, e.g. palladium, platinum, cobalt, copper, nickel, rhodium, mercury, selenium, and bromine. Most of these are also active in the oxidation of CO to CO2 in water, due to the similarity of the reaction pathways for CO2 and carbonate formation, which involve intermediate hydroxy carbonyl and alkoxy carbonyl species, respectively. Competition between carbon dioxide and carbonate formation is a major factor that has to be considered when catalyst re-oxidation is carried out by oxygen, as in most technical developments, since in this case water is co-produced in the reaction system. [Pg.26]

A variety of catalysts including copper, nickel, cobalt, and the platinum metals group have been used successfully in carbonyl reduction. Palladium, an excellent catalyst for hydrogenation of aromatic carbonyls is relatively ineffective for aliphatic carbonyls this latter group has a low strength of adsorption on palladium relative to other metals (72,91). Nonetheless, palladium can be used very well with aliphatic carbonyls with sufficient patience, as illustrated by the difficult-to-reduce vinylogous amide I to 2 (9). [Pg.66]

Nickel, rhodium, palladium, platinum, and Raney cobalt (43) have all been used successfully in reductive alkylations. Platinum is the most used by far (J6). With small carbonyl molecules, such as acetone, palladium is about as effective as platinum, but as the molecular weight increases, platinum is apt to be more effective (SO). [Pg.86]

In the early work on the thermolysis of metal complexes for the synthesis of metal nanoparticles, the precursor carbonyl complex of transition metals, e.g., Co2(CO)8, in organic solvent functions as a metal source of nanoparticles and thermally decomposes in the presence of various polymers to afford polymer-protected metal nanoparticles under relatively mild conditions [1-3]. Particle sizes depend on the kind of polymers, ranging from 5 to >100 nm. The particle size distribution sometimes became wide. Other cobalt, iron [4], nickel [5], rhodium, iridium, rutheniuim, osmium, palladium, and platinum nanoparticles stabilized by polymers have been prepared by similar thermolysis procedures. Besides carbonyl complexes, palladium acetate, palladium acetylacetonate, and platinum acetylac-etonate were also used as a precursor complex in organic solvents like methyl-wo-butylketone [6-9]. These results proposed facile preparative method of metal nanoparticles. However, it may be considered that the size-regulated preparation of metal nanoparticles by thermolysis procedure should be conducted under the limited condition. [Pg.367]

While cobalt and rhodium have been the focus of most research and are the metals of choice for commercial hydroformylation reactions, numerous other metals have been disclosed as catalysts in the patent literature. However, only some of the carbonyl-forming metals can be seriously considered. Even of these, a comparison of relative reactivity (118) based on cobalt as the standard indicates a decided preference for only two or three metals. This listing may be considered incomplete without the inclusion of platinum and copper, which have recently received significant attention (vide infra). [Pg.53]

ClBF4IrOP C37H3i, Iridium(III), carbonyl-chlorohydrido[tetrafluoroborato-(1 - )]bis(triphenylphosphine)-, 26 117 ClBF4IrOP2C38H33, Iridium(III), carbonyl-chloromethyl[tetrafluoroborato-(1 -)]bis(triphenylphosphine)-, 26 118 CICoP3CMH45, Cobalt, chlorotris-(triphenylphosphine)-, 26 190 ClF PtSCi M, Platinum(II), chlorobis-(triethylphosphine) (trifluoro-methanesulfonato)-ds-, 26 126... [Pg.416]

In (1) the electrolytic process, a nickel of 99.9% purity is produced, along with slimes which may contain gold, silver, platinum, palladium, rhodium, iridium, ruthenium, and cobalt, which are subject to further refining and recovery. In (2) the Mond process, the nickel oxide is combined with carbon monoxide to form nickel carbonyl gas, Ni(CO)4. The impurities, including cobalt, are left as a solid residue. Upon fuitlier heating of the gas to about 180°C, the nickel carbonyl is decomposed, the freed nickel condensing on nickel shot and the carbon monoxide recycled. The Mond process also makes a nickel of 99.9% purity. [Pg.1071]

Since its discovery some 50 years ago by Roelen, a great deal of research has been carried out on the reaction and its industrial importance is great. The initial work used as catalyst precursor [Co2(CO)8] or simple cobalt salts which were carbonylated under the reaction conditions. Subsequently, phosphine-modified cobalt catalysts were introduced and, more recently, rhodium and platinum catalysts. Only the cobalt and rhodium catalysts have found industrial use to date. [Pg.258]

FT-ICR, see Fourier-transform ion cyclotron resonance Fullerene[60], germanium-germanium addition, 10, 748 Fullerenes with cobalt, 7, 51 on cobalt Cp rings, 7, 73 inside metallodendrimers, 12, 401 microwave applications, 1, 334 Pd rc-complexes, 8, 348 Ru—Os complexes, 6, 830 with tungsten carbonyls, 5, 687 )2-Fullerenes, with platinum, 8, 634 Fulvalene actinide complex, synthesis, 4, 232 Fulvalene chromium carbonyls, synthesis and characteristics, 5, 264... [Pg.107]

While platinum and rhodium are predominantly used as efficient catalysts in the hydrosilylation and cobalt group complexes are used in the reactions of silicon compounds with carbon monooxide, in the last couple of years the chemistry of ruthenium complexes has progressed significantly and plays a crucial role in catalysis of these types of processes (e.g., dehydrogenative silylation, hydrosilylation and silylformylation of alkynes, carbonylation and carbocyclisation of silicon substrates). [Pg.242]


See other pages where Platinum cobalt carbonyls is mentioned: [Pg.432]    [Pg.16]    [Pg.432]    [Pg.432]    [Pg.172]    [Pg.247]    [Pg.250]    [Pg.87]    [Pg.198]    [Pg.148]    [Pg.292]    [Pg.455]    [Pg.1088]    [Pg.355]    [Pg.22]    [Pg.70]    [Pg.148]    [Pg.252]    [Pg.264]    [Pg.172]    [Pg.292]    [Pg.18]    [Pg.458]    [Pg.76]    [Pg.404]    [Pg.50]    [Pg.174]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Carbonyl complexes cobalt-platinum

Carbonyl complexes, chromium cobalt-platinum

Carbonyls, chromium cobalt-platinum

Cobalt carbonylation

Platinum carbonylation

Platinum-Cobalt

© 2024 chempedia.info