Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plastic geometry

In some older instruments, chrome-plated brass geometries can be attacked by a number of everyday liquids. Steel and plastic geometries (or even titanium in certain circumstances) are usually recommended, but note the difference between stainless and mild steels, since the latter can produce ions in solution which might alter the viscosity of some aqueous liquids. [Pg.45]

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

Wagner equation Wagner number Wakamatsu reaction Waldhof fermentor Walkman Wallace plasticity Wallach procedure Wall baffles Wallboard Wall geometries Wallpaper paste Wallpaper pastes Wallpapers Wall plaster Walnut oil... [Pg.1062]

Structural Variables. The properties of a foamed plastic can be related to several variables of composition and geometry often referred to as stmctural variables. [Pg.410]

Polymer Composition. The piopeities of foamed plastics aie influenced both by the foam stmctuie and, to a gieatei extent, by the piopeities of the parent polymer. The polymer phase description must include the additives present in that phase as well. The condition or state of the polymer phase (orientation, crystallinity, previous thermal history), as well as its chemical composition, determines the properties of that phase. The polymer state and cell geometry are intimately related because they are determined by common forces exerted during the expansion and stabilization of the foam. [Pg.411]

The most important stmctural variables are again polymer composition, density, and ceU size and shape. Stmctural foams have relatively high densities (typically >300 kg/m ) and ceU stmctures similar to those in Figure 2d which are primarily comprised of holes in contrast to a pentagonal dodecahedron type of ceU stmcture in low density plastic foams. Since stmctural foams are generally not uniform in ceU stmcture, they exhibit considerable variation in properties with particle geometry (103). [Pg.412]

The drag flow or volumetric conveying capabiUty, for the plastic melt is dependent only on screw speed. A/, and the geometry, M, of the screw ... [Pg.137]

Penetration—Indentation. Penetration and indentation tests have long been used to characterize viscoelastic materials such as asphalt, mbber, plastics, and coatings. The basic test consists of pressing an indentor of prescribed geometry against the test surface. Most instmments have an indenting tip, eg, cone, needle, or hemisphere, attached to a short rod that is held vertically. The load is controlled at some constant value, and the time of indentation is specified the size or depth of the indentation is measured. Instmments have been built which allow loads as low as 10 N with penetration depths less than mm. The entire experiment is carried out in the vacuum chamber of a scanning electron microscope with which the penetration is monitored (248). [Pg.194]

Let US now look at how this contact geometry influences friction. If you attempt to slide one of the surfaces over the other, a shear stress fj/a appears at the asperities. The shear stress is greatest where the cross-sectional area of asperities is least, that is, at or very near the contact plane. Now, the intense plastic deformation in the regions of contact presses the asperity tips together so well that there is atom-to-atom contact across the junction. The junction, therefore, can withstand a shear stress as large as k approximately, where k is the shear-yield strength of the material (Chapter 11). [Pg.243]

The utility of K or any elastic plastic fracture mechanics (EPFM) parameter to describe the mechanical driving force for crack growth is based on the ability of that parameter to characterize the stress-strain conditions at the crack tip in a maimer which accounts for a variety of crack lengths, component geometries and loading conditions. Equal values of K should correspond to equal crack tip stress-strain conditions and, consequently, to equivalent crack growth behavior. In such a case we have mechanical similitude. Mechanical similitude implies equivalent crack tip inelastic zones and equivalent elastic stress fields. Fracture mechanics is... [Pg.495]

In any particular material, the flexural stiffness will be defined by the second moment of area, /, for the cross-section. As with a property such as area, the second moment of area is independent of the material - it is purely a function of geometry. If we consider a variety of cross-sections as follows, we can easily see the benefits of choosing carefully the cross-sectional geometry of a moulded plastic component. [Pg.74]

During service the impact behaviour of a plastic article will be influenced by the combined effects of the applied stress system and the geometry of the article. Although the applied stress system may appear simple (for example, uniaxial) it may become triaxial in local areas due to a geometrical discontinuity. Fig. 2.78... [Pg.148]

Consider the thermoforming of a plastic sheet of thickness, Ao, into a conical mould as shown in Fig. 4.55(a). At this moment in time, t, the plastic is in contact with the mould for a distance, 5, and the remainder of the sheet is in the form of a spherical dome of radius, R, and thickness, h. From the geometry of the mould the radius is given by... [Pg.311]

Section 1.9 showed that as long as an oxide layer remains adherent and continuous it can be expected to increase in thickness in conformity with one of a number of possible rate laws. This qualification of continuity is most important the direct access of oxidant to the metal by way of pores and cracks inevitably means an increase in oxidation rate, and often in a manner in which the lower rate is not regained. In common with other phase change reactions the volume of the solid phase alters during the course of oxidation it is the manner in which this change is accommodated which frequently determines whether the oxide will develop discontinuities. It is found, for example, that oxidation behaviour depends not only on time and temperature but also on specimen geometry, oxide strength and plasticity or even on specific environmental interactions such as volatilisation or dissolution. [Pg.268]

With plastics to a greater extent than other materials, an opportunity exists to optimize product design by focusing on material composition and orientation to structural member geometry when required. The type of designer to produce a product depends on the product requirements. As an example in most cases an engineering designer is not needed... [Pg.15]


See other pages where Plastic geometry is mentioned: [Pg.116]    [Pg.18]    [Pg.311]    [Pg.42]    [Pg.394]    [Pg.543]    [Pg.548]    [Pg.127]    [Pg.137]    [Pg.142]    [Pg.153]    [Pg.512]    [Pg.172]    [Pg.435]    [Pg.100]    [Pg.296]    [Pg.324]    [Pg.127]    [Pg.147]    [Pg.54]    [Pg.58]    [Pg.114]    [Pg.359]    [Pg.207]    [Pg.134]    [Pg.147]    [Pg.152]    [Pg.246]    [Pg.9]    [Pg.273]    [Pg.1291]    [Pg.1296]    [Pg.174]    [Pg.28]    [Pg.88]    [Pg.126]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Design Procedure for Plastics Parts Function, Material, Geometry, Test

© 2024 chempedia.info