Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friction influence

The TST rate constant for electronically adiabatic ET reactions is the well-known Marcus rate constant kjjj [27-29], In the language of this chapter, solvent dynamical effects can alter the actual rate from this limit due to the friction influence. The corresponding GH equations for kct = / kfj are strictly analogous... [Pg.237]

We have reviewed above the GH approach to reaction rate constants in solution, together with simple models that give a deeper perspective on the reaction dynamics and various aspects of the generalized frictional influence on the rates. The fact that the theory has always been found to agree with Molecular Dynamics computer simulation results for realistic models of many and varied reaction types gives confidence that it may be used to analyze real experimental results. [Pg.252]

Lead salt (basic), PbC6H8N2 + 2PbO, red powd, mp-deflgr at 215° explodes on impact or frictional influences insol in hot w (Refs 1 8)... [Pg.184]

Both last terms on the right side of (11) denotes the friction influence on each of the fluids in relation to their seepage velocities wp = — x . The... [Pg.362]

This derivation is largely meant to be a schematic way of helping us see how the vibrational friction influences the rate of solute-solvent energy transfer. Notice, however, that we never specified the actual initial conditions of an experiment (in particular whether the solute was to be initially hot or cold with respect to the surrounding solvent). Without such a specification we cannot predict the net sign of the energy flow. [Pg.169]

The atomizing effect is dependent upon the centrifugal force generated by rotation of the disk it also depends upon the frictional influence of the external air. The liquid is continuously accelerated to the disk rim by the centrifugal force produced by the disk rotation. Thus, the liquid is spread over the disk internal surface and discharged horizontally at a high speed from the periphery of the disk. [Pg.51]

The original geometry of workpiece and tool are modeled, and the contact between two different surfaces and the friction influence in the area of contact between chip and tool are considered by the software. [Pg.327]

The advantages of the Lagrangian explicit model are that they are able to handle large deformations, thermal effects, friction influence, and segmented chipping. The major disadvantages of this model are related to the need of implementing fracture criteria. [Pg.327]

In the sections below a brief overview of static solvent influences is given in A3.6.2, while in A3.6.3 the focus is on the effect of transport phenomena on reaction rates, i.e. diflfiision control and the influence of friction on intramolecular motion. In A3.6.4 some special topics are addressed that involve the superposition of static and transport contributions as well as some aspects of dynamic solvent effects that seem relevant to understanding the solvent influence on reaction rate coefficients observed in homologous solvent series and compressed solution. More comprehensive accounts of dynamics of condensed-phase reactions can be found in chapter A3.8. chapter A3.13. chapter B3.3. chapter C3.1. chapter C3.2 and chapter C3.5. [Pg.832]

The key quantity in barrier crossing processes in tiiis respect is the barrier curvature Mg which sets the time window for possible influences of the dynamic solvent response. A sharp barrier entails short barrier passage times during which the memory of the solvent environment may be partially maintained. This non-Markov situation may be expressed by a generalized Langevin equation including a time-dependent friction kernel y(t) [ ]... [Pg.852]

Because of the general difficulty encountered in generating reliable potentials energy surfaces and estimating reasonable friction kernels, it still remains an open question whether by analysis of experimental rate constants one can decide whether non-Markovian bath effects or other influences cause a particular solvent or pressure dependence of reaction rate coefficients in condensed phase. From that point of view, a purely... [Pg.852]

Haynes G R, Voth G A and Poliak E 1994 A theory for the activated barrier crossing rate constant in systems influenced by space and time dependent friction J. Chem. Phys. 101 7811... [Pg.897]

The often-cited Amontons law [101. 102] describes friction in tenns of a friction coefiBcient, which is, a priori, a material constant, independent of contact area or dynamic parameters, such as sliding velocity, temperature or load. We know today that all of these parameters can have a significant influence on the magnitude of the measured friction force, especially in thin-film and boundary-lubricated systems. [Pg.1743]

The first requirement is the definition of a low-dimensional space of reaction coordinates that still captures the essential dynamics of the processes we consider. Motions in the perpendicular null space should have irrelevant detail and equilibrate fast, preferably on a time scale that is separated from the time scale of the essential motions. Motions in the two spaces are separated much like is done in the Born-Oppenheimer approximation. The average influence of the fast motions on the essential degrees of freedom must be taken into account this concerns (i) correlations with positions expressed in a potential of mean force, (ii) correlations with velocities expressed in frictional terms, and iit) an uncorrelated remainder that can be modeled by stochastic terms. Of course, this scheme is the general idea behind the well-known Langevin and Brownian dynamics. [Pg.20]

The characteristics of a powder that determine its apparent density are rather complex, but some general statements with respect to powder variables and their effect on the density of the loose powder can be made. (/) The smaller the particles, the greater the specific surface area of the powder. This increases the friction between the particles and lowers the apparent density but enhances the rate of sintering. (2) Powders having very irregular-shaped particles are usually characterized by a lower apparent density than more regular or spherical ones. This is shown in Table 4 for three different types of copper powders having identical particle size distribution but different particle shape. These data illustrate the decisive influence of particle shape on apparent density. (J) In any mixture of coarse and fine powder particles, an optimum mixture results in maximum apparent density. This optimum mixture is reached when the fine particles fill the voids between the coarse particles. [Pg.181]

Although neither inflammable nor self-igniting, sodium peroxide is highly inflammable when mixed with oxidi2able substances. Such mixtures bum violendy, even ia the absence of air. Tme sodium peroxocarbonates can be formed under the influence of atmospheric moisture and carbon dioxide. At temperatures >50° C and when exposed to pressure or friction, these peroxocarbonates can decompose and generate flame. [Pg.91]

The viscous or frictional loss term in the mechanical energy balance for most cases is obtained experimentally. For many common fittings found in piping systems, such as expansions, contrac tions, elbows and valves, data are available to estimate the losses. Substitution into the energy balance then allows calculation of pressure drop. A common error is to assume that pressure drop and frictional losses are equivalent. Equation (6-16) shows that in addition to fric tional losses, other factors such as shaft work and velocity or elevation change influence pressure drop. [Pg.642]

In a submerged-tube FC evaporator, all heat is imparted as sensible heat, resulting in a temperature rise of the circulating hquor that reduces the overall temperature difference available for heat transfer. Temperature rise, tube proportions, tube velocity, and head requirements on the circulating pump all influence the selec tion of circulation rate. Head requirements are frequently difficult to estimate since they consist not only of the usual friction, entrance and contraction, and elevation losses when the return to the flash chamber is above the liquid level but also of increased friction losses due to flashing in the return line and vortex losses in the flash chamber. Circulation is sometimes limited by vapor in the pump suction hne. This may be drawn in as a result of inadequate vapor-liquid separation or may come from vortices near the pump suction connection to the body or may be formed in the line itself by short circuiting from heater outlet to pump inlet of liquor that has not flashed completely to equilibrium at the pressure in the vapor head. [Pg.1139]

Let US now look at how this contact geometry influences friction. If you attempt to slide one of the surfaces over the other, a shear stress fj/a appears at the asperities. The shear stress is greatest where the cross-sectional area of asperities is least, that is, at or very near the contact plane. Now, the intense plastic deformation in the regions of contact presses the asperity tips together so well that there is atom-to-atom contact across the junction. The junction, therefore, can withstand a shear stress as large as k approximately, where k is the shear-yield strength of the material (Chapter 11). [Pg.243]

Other spectral densities correspond to memory effects in the generalized Langevin equation, which will be considered in section 5. It is the equivalence between the friction force and the influence of the oscillator bath that allows one to extend (2.21) to the quantum region there the friction coefficient rj and f t) are related by the fluctuation-dissipation theorem (FDT),... [Pg.17]


See other pages where Friction influence is mentioned: [Pg.389]    [Pg.88]    [Pg.181]    [Pg.167]    [Pg.22]    [Pg.20]    [Pg.146]    [Pg.154]    [Pg.389]    [Pg.88]    [Pg.181]    [Pg.167]    [Pg.22]    [Pg.20]    [Pg.146]    [Pg.154]    [Pg.842]    [Pg.855]    [Pg.2745]    [Pg.39]    [Pg.374]    [Pg.90]    [Pg.248]    [Pg.454]    [Pg.458]    [Pg.89]    [Pg.351]    [Pg.57]    [Pg.791]    [Pg.1855]    [Pg.233]    [Pg.225]    [Pg.241]    [Pg.244]    [Pg.410]    [Pg.269]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



© 2024 chempedia.info