Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma membrane prokaryotic

Prokaryotic cells have only a single membrane, the plasma membrane or cell membrane. Because they have no other membranes, prokaryotic cells contain no nucleus or organelles. Nevertheless, they possess a distinct nuclear area where a single circular chromosome is localized, and some have an internal membranous structure called a mesosome that is derived from and continuous with the cell membrane. Reactions of cellular respiration are localized on these membranes. In photosynthetic prokaryotes such as the cyanobacteria,... [Pg.24]

Even the plasma membranes of prokaryotic cells (bacteria) are complex (Figure 9.1). With no intracellular organelles to divide and organize the work, bacteria carry out processes either at the plasma membrane or in the cyto-... [Pg.260]

Although the interior of a prokaryotic cell is not subdivided into compartments by internal membranes, the cell still shows some segregation of metabolism. For example, certain metabolic pathways, such as phospholipid synthesis and oxidative phosphorylation, are localized in the plasma membrane. Also, protein biosynthesis is carried out on ribosomes. [Pg.582]

All these intermediates except for cytochrome c are membrane-associated (either in the mitochondrial inner membrane of eukaryotes or in the plasma membrane of prokaryotes). All three types of proteins involved in this chain— flavoproteins, cytochromes, and iron-sulfur proteins—possess electron-transferring prosthetic groups. [Pg.680]

If bound first by albumin, heme circulates until it is transferred to hemopexin (52). In vitro in the absence of hemopexin, nonspecific cellular uptake of heme by diffusion is facile (55), but as expected, the presence of hemopexin greatly slows uptake (54), since receptor-mediated uptake is necessarily slower and of lower capacity than diffusion-limited uptake. There is currently no evidence that either receptors for albumin or membrane transporters for heme, like those in prokaryotes, are present in the plasma membrane of mammalian cells, although such transport proteins may be present in the membranes of organelles. [Pg.210]

Tetracycline and its derivatives Inhibit entry of the aminoacyl-tRNAs into the A site of both eukaryotic and prokaryotic ribosomes, but eukaryotic plasma membranes are impermeable to these drugs. [Pg.173]

All cells are bounded by a plasma membrane have a cytosol containing metabolites, coenzymes, inorganic ions, and enzymes and have a set of genes contained within a nucleoid (prokaryotes) or nucleus (eukaryotes). [Pg.12]

This hypothesis presumes that early free-living prokaryotes had the enzymatic machinery for oxidative phosphorylation and predicts that their modern prokaryotic descendants must have respiratory chains closely similar to those of modern eukaryotes. They do. Aerobic bacteria carry out NAD-linked electron transfer from substrates to 02, coupled to the phosphorylation of cytosolic ADP. The dehydrogenases are located in the bacterial cytosol and the respiratory chain in the plasma membrane. The electron carriers are similar to some mitochondrial electron carriers (Fig. 19-33). They translocate protons outward across the plasma membrane as electrons are transferred to 02. Bacteria such as Escherichia coli have F0Fi complexes in their plasma membranes the F portion protrudes into the cytosol and catalyzes ATP synthesis from ADP and P, as protons flow back into the cell through the proton channel of F0. [Pg.721]

Phenol and Ni2+ ions are repellent.46-48 By what mechanism can a minuscule prokaryotic cell sense a concentration gradient It is known that the plasma membrane contains receptor proteins, whose response is linked to control of the flagella. Since the dimensions of a bacterium are so small, it would probably be impossible for them to sense the difference in concentration between one end and the other end of the cell. The chemotatic response apparently results from the fact that a bacterium swims for a relatively long time without tumbling when it senses that the concentration of the attractant is increasing with time. When it swims in the opposite direction and the concentration of attractant decreases, it tumbles sooner.49... [Pg.1094]

Generalized representations of the internal structures of animal and plant cells (eukaryotic cells). Cells are the fundamental units in all living systems, and they vary tremendously in size and shape. All cells are functionally separated from their environment by the plasma membrane that encloses the cytoplasm. Plant cells have two structures not found in animal cells a cellulose cell wall, exterior to the plasma membrane, and chloroplasts. The many different types of bacteria (prokaryotes) are all smaller than most plant and animal cells. Bacteria, like plant cells, have an exterior cell wall, but it differs greatly in chemical composition and structure from the cell wall in plants. Like all other cells, bacteria have a plasma membrane that functionally separates them from their environment. Some bacteria also have a second membrane, the outer membrane, which is exterior to the cell wall. [Pg.5]

As we will see, the evolutionary tree is bisected into a lower prokaryotic domain and an upper eukaryotic domain. The terms prokaryote and eukaryote refer to the most basic division between cell types. The fundamental difference is that eukaryotic cells contain a membrane-bounded nucleus, whereas prokaryotes do not. The cells of prokaryotes usually lack most of the other membrane-bounded organelles as well. Plants, fungi, and animals are eukaryotes, and bacteria are prokaryotes. The biochemical functions associated with organelles are frequently present in bacteria, but they are usually located on the inner plasma membrane. [Pg.8]

Algae are members of the plant kingdom and contain chloroplasts similar to those of higher plants, but prokaryotic photosynthetic organisms do not have chloroplasts. In prokaryotes, the photochemical reactions occur in the plasma membrane, which has extensive invaginations resembling the cristae of the mitochondrial inner membrane (fig. 15.3). Table 15.1 summarizes the main distinctions between the various types of photosynthetic organisms. [Pg.332]

Synthesis of most phospholipids starts from glycerol-3-phosphate, which is formed in one step from the central metabolic pathways, and acyl-CoA, which arises in one step from activation of a fatty acid. In two acylation steps the key compound phosphatidic acid is formed. This can be converted to many other lipid compounds as well as CDP-diacylglycerol, which is a key branchpoint intermediate that can be converted to other lipids. Distinct routes to phosphatidylethanolamine and phosphatidylcholine are found in prokaryotes and eukaryotes. The pathway found in eukaryotes starts with transport across the plasma membrane of ethanolamine and/or choline. The modified derivatives of these compounds are directly condensed with diacylglycerol to form the corresponding membrane lipids. Modification of the head-groups or tail-groups on preformed lipids is a common reaction. For example, the ethanolamine of the head-group in phosphatidylethanolamine can be replaced in one step by serine or modified in 3 steps to choline. [Pg.437]

In general, however, in prokaryotes the function of Na+ in the cotransport of solutes is taken over by H+. A proton gradient is set up across the plasma membrane by the membrane ATPase,... [Pg.558]

Potentized homeopathic drugs are capable of producing effects on both prokaryotic and eukaryotic cells. Prokaryotic cells are usually smaller in size (1 - 10 pm) than eukaryotic ones (5 - 100 pm). Membrane-bound organelles like mitochondria, endoplasmic reticulum, Golgi complexes etc. are present in eukaryotic cells but absent in prokaryotic ones. While eukaryotic cells have nucleus containing DNA with histone and non-histone proteins in chromosoms, prokaryotic cells have no nucleus and their DNA with non-histone proteins lies in nucleoid without any membranous envelope. However, both types of cells are covered by plasma membrane with some common features. [Pg.88]

Large group of organisms that do not have organelles enclosed in cell membranes and have DNA in both a chromosome and circular plasmids. They have a protein and complex carbohydrate cell wall over a plasma membrane. Although eukaryotic and prokaryotic cells are structurally different, their basic biochemical processes are similar. Volume 1(1, 2), Volume 2(3). [Pg.380]

Cells are broadly classified as either eukaryotes or prokaryotes (see Appendix 3). Both types have a membrane, known as the cytoplasmic or plasma membrane (see Appendix 3), that separates the internal medium (intracellular fluid) of the cell from the external medium (extracellular fluid). Cytoplasmic membranes may also divide the interior of a cell into separate compartments. In addition to the cytoplasmic membrane, the more fragile membranes of plants and bacteria are also protected by a rigid external covering known as a cell wall. The combination of cell wall and plasma membrane is referred to as the cell envelope (Appendix 2). [Pg.131]

Each prokaryotic cell is surrounded by a plasma membrane. The cell has no subcellular organelles, only infoldings of the plasma membrane called mesosomes. The deoxyribonucleic acid (DNA) is condensed within the cytosol to form the nucleoid. Some prokaryotes have tail-like flagella. [Pg.1]

The peptidoglycan (protein and oligosaccharide) cell wall protects the prokaryotic cell from mechanical and osmotic pressure. A Gram-positive bacterium has a thick cell wall surrounding the plasma membrane, whereas Gram-negative bacteria have a thinner cell wall and an outer membrane, between which is the periplasmic space. [Pg.1]

The sterol cholesterol (Fig. 2b) is a major constituent of animal plasma membranes but is absent from prokaryotes. The fused ring system of cholesterol means that it is more rigid than other membrane lipids. As well as being an important component of membranes, cholesterol is the metabolic precursor of the steroid hormones (see Topic K5). Plants contain little cholesterol but have instead a number of other sterols, mainly stigmasterol and P-sitosterol which differ from cholesterol only in their aliphatic side chains. [Pg.120]

Cells must ensure that each newly synthesized protein is sorted to its correct location where it can carry out the appropriate function. This process is called protein targeting. In a eukaryotic cell, the protein may be destined to stay in the cytosol, for example an enzyme involved in glycolysis (see Topic J3). Alternatively it may need to be targeted to an organelle (such as a mitochondrion, lysosome, peroxisome, chloroplast or the nucleus) or be inserted into the plasma membrane or exported out of the cell. In bacteria such as E. coli, the protein may stay in the cytosol, be inserted into the plasma membrane or the outer membrane, be sent to the space between these two membranes (the periplasmic space) or be exported from the cell. In both prokaryotes and eukaryotes, if a protein is destined for the cytosol, it is made on free ribosomes in the cytosol and released directly into the cytosol. If it is destined for other final locations, specific protein-targeting mechanisms are involved. [Pg.231]

The citric acid cycle operates in the mitochondria of eukaryotes and in the cytosol of prokaryotes. Succinate dehydrogenase, the only membrane-bound enzyme in the citric acid cycle, is embedded in the inner mitochondrial membrane in eukaryotes and in the plasma membrane in prokaryotes. [Pg.344]

Electron transport and oxidative phosphorylation re-oxidize NADH and FADH2 and trap the energy released as ATP. In eukaryotes, electron transport and oxidative phosphorylation occur in the inner membrane of mitochondria whereas in prokaryotes the process occurs in the plasma membrane. [Pg.347]

In eukaryotes, electron transport and oxidative phosphorylation occur in the inner membrane of mitochondria. These processes re-oxidize the NADH and FADH2 that arise from the citric acid cycle (located in the mitochondrial matrix Topic L2), glycolysis (located in the cytoplasm Topic J3) and fatty acid oxidation (located in the mitochondrial matrix Topic K2) and trap the energy released as ATP. Oxidative phosphorylation is by far the major source of ATP in the cell. In prokaryotes, the components of electron transport and oxidative phosphorylation are located in the plasma membrane (see Topic Al). [Pg.349]

Electron transport through oxidases in the plasma membrane contributes to, or controls, part of the proton release from the cell. The details of oxidase function and the mechanism of control remain to be elucidated. The NADPH oxidase of neutrophils is a special case in which proton transport is coupled to the cytochrome >557 electron carrier. This type of proton transport has its precedents in the well-characterized proton pumping through electron carriers in mitochondrial and chloroplast membranes and prokaryotic plasma membranes. [Pg.184]


See other pages where Plasma membrane prokaryotic is mentioned: [Pg.28]    [Pg.279]    [Pg.307]    [Pg.308]    [Pg.723]    [Pg.496]    [Pg.809]    [Pg.336]    [Pg.102]    [Pg.191]    [Pg.3]    [Pg.274]    [Pg.275]    [Pg.95]    [Pg.234]    [Pg.612]    [Pg.442]    [Pg.441]    [Pg.919]    [Pg.89]    [Pg.91]    [Pg.132]    [Pg.1]    [Pg.4]    [Pg.138]    [Pg.24]   
See also in sourсe #XX -- [ Pg.36 , Pg.36 ]




SEARCH



Membranes plasma

Prokaryote membranes

Prokaryotes

Prokaryotic

Prokaryots

© 2024 chempedia.info