Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma liquid

Plasma Liquid part of the blood after removing the red cells, white cells and platelets. [Pg.131]

Iron for biosynthesis is transported through the bloodstream by the protein transferrin. The following procedure measures the Fe content of transferrin 10 This analysis requires only about 1 p,g for an accuracy of 2-5%. Human blood usually contains about 45 vol% cells and 55 vol% plasma (liquid). If blood is collected without an anticoagulant, the blood clots, and the liquid that remains is called serum. Serum normally contains about 1 pg of Fe/mL attached to transferrin. [Pg.385]

Boppana V, Miller-Stein C, Schaefer WH (1996) Direct plasma liquid chromatographic-tandem mass spectrometric analysis of granisetron and its 7-hydroxy metabolite utilizing internal surface reversed-phase guard columns and automated column switching devices. J Chromatogr B 678 227-236... [Pg.346]

Directly applying Gubkin s concept of a plasma cathode, Koo et al. produced isolated metal nanoparticles by reduction of a platinum salt at the free surface of its aqueous solution [39]. The authors used an AC discharge as cathode over the surface of an aqueous solution of ITPtCk. Platinum particles with a diameter of about 2 nm were deposited at the plasma liquid electrolyte interface by reduction with free electrons from the discharge. [Pg.269]

Boppana, V.K. Miller-Stein, C. Schaefer, W.H. Direct Plasma Liquid Chromatographic-Tandem Mass Spectrometric Analysis of Ganisetron and its 7-Hydroxy Metabolite Utilizing Internal Surface Reversed-Phase Guard Columns and Automated Column-switching Devices, J. Chromatogr. B. 678, 227-236 (1996). [Pg.352]

See also Atomic Emission Spectrometry Inductively Coupled Plasma. Atomic Mass Spectrometry Inductively Coupled Plasma. Liquid Chromatography Overview. Mass Spectrometry Eiectrospray. [Pg.150]

Plasma Liquid portion of the blood, excluding the formed elements. [Pg.1168]

Richmonds, C., Witzke, M., Battling, B. et al. (2011) Electron-transfer reactions at the plasma-liquid interface. Journal of the American Chemical Society, 133, 17582-17585. [Pg.326]

O Neill L, O Hare LA, Leadley SR, Goodwin AJ. Atmospheric pressure plasma liquid... [Pg.485]

In this chapter, we present the development of a new plasma system to form the spatially and temporally stable plasma-liquid interfacial surface (Baba et al., 2007 Kaneko et al.. [Pg.533]

The sample should be liquid or in solution. It is pumped and nebulized in an argon atmosphere, then sent through a plasma torch that is, in an environment where the material is strongly ionized resulting from the electromagnetic radiation produced by an induction coil. Refer to the schematic diagram in Figure 2.8. [Pg.37]

Atomization and Excitation Atomic emission requires a means for converting an analyte in solid, liquid, or solution form to a free gaseous atom. The same source of thermal energy usually serves as the excitation source. The most common methods are flames and plasmas, both of which are useful for liquid or solution samples. Solid samples may be analyzed by dissolving in solution and using a flame or plasma atomizer. [Pg.435]

Preparing the Sample Flame and plasma sources are best suited for the analysis of samples in solution and liquid form. Although solids can be analyzed by direct insertion into the flame or plasma, they usually are first brought into solution by digestion or extraction. [Pg.437]

A schematic illustration of a typical inlet apparatus for separating volatile hydrides from the analyte solution, in which they are generated upon reduction with sodium tetrahydroborate. When the mixed analyte solution containing volatile hydrides enters the main part of the gas/liquid separator, the volatiles are released and mix with argon sweep and makeup gas, with which they are transported to the center of the plasma. The unwanted analyte solution drains from the end of the gas/liquid separator. The actual construction details of these gas/liquid separators can vary considerably, but all serve the same purpose. In some of them, there can be an intermediate stage for removal of air and hydrogen from the hydrides before the latter are sent to the plasma. [Pg.100]

Other vapor introduction systems are discussed in Parts B and C (Chapters 16 and 17) because, although liquids and solids are ultimately introduced to the plasma flame as vapors, these samples are usually prepared differently from naturally gaseous ones. For example, electrothermal (oven) or laser heating of solids and liquids to form vapors is used extensively to get the samples into the plasma flame. At one extreme with very volatile liquids, no heating is necessary, but, at the other extreme, very high temperatures are needed to vaporize a sample. For convenience, the electrothermal and laser devices are discussed in Part C (Chapter 17) rather than here. [Pg.102]

Gases and vapors of volatile liquids can be introduced directly into a plasma flame for elemental analysis or for isotope ratio measurements. Some elements can be examined by first converting them chemically into volatile forms, as with the formation of hydrides of arsenic and tellurium. It is important that not too much analyte pass into the flame, as the extra material introduced into the plasma can cause it to become unstable or even to go out altogether, thereby compromising accuracy or continuity of measurement. [Pg.102]

Sample Inlets for Plasma Torches, Part B Liquid Inlets... [Pg.103]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

Suitable inlets commonly used for liquids or solutions can be separated into three major classes, two of which are discussed in Parts A and C (Chapters 15 and 17). The most common method of introducing the solutions uses the nebulizer/desolvation inlet discussed here. For greater detail on types and operation of nebulizers, refer to Chapter 19. Note that, for all samples that have been previously dissolved in a liquid (dissolution of sample in acid, alkali, or solvent), it is important that high-purity liquids be used if cross-contamination of sample is to be avoided. Once the liquid has been vaporized prior to introduction of residual sample into the plasma flame, any nonvolatile impurities in the liquid will have been mixed with the sample itself, and these impurities will appear in the results of analysis. The problem can be partially circumvented by use of blanks, viz., the separate examination of levels of residues left by solvents in the absence of any sample. [Pg.104]

The term nebulizer is used generally as a description for any spraying device, such as the hair spray mentioned above. It is normally applied to any means of forming an aerosol spray in which a volume of liquid is broken into a mist of vapor and small droplets and possibly even solid matter. There is a variety of nebulizer designs for transporting a solution of analyte in droplet form to a plasma torch in ICP/MS and to the inlet/ionization sources used in electrospray and mass spectrometry (ES/MS) and atmospheric-pressure chemical ionization and mass spectrometry (APCI/MS). [Pg.138]

In a concentric-tube nebulizer, the sample solution is drawn through the inner capillary by the vacuum created when the argon gas stream flows over the end (nozzle) at high linear velocity. As the solution is drawn out, the edges of the liquid forming a film over the end of the inner capillary are blown away as a spray of droplets and solvent vapor. This aerosol may pass through spray and desolvation chambers before reaching the plasma flame. [Pg.142]

The aim of breaking up a thin film of liquid into an aerosol by a cross flow of gas has been developed with frits, which are essentially a means of supporting a film of liquid on a porous surface. As the liquid flows onto one surface of the frit (frequently made from glass), argon gas is forced through from the undersurface (Figure 19.16). Where the gas meets the liquid film, the latter is dispersed into an aerosol and is carried as usual toward the plasma flame. There have been several designs of frit nebulizers, but all work in a similar fashion. Mean droplet diameters are approximately 100 nm, and over 90% of the liquid sample can be transported to the flame. [Pg.146]

For a longitudinal disturbance of wavelength 12 pm, the droplets have a mean diameter of about 3-4 pm. These very fine droplets are ideal for ICP/MS and can be swept into the plasma flame by a flow of argon gas. Unlike pneumatic forms of nebulizer in which the relative velocities of the liquid and gas are most important in determining droplet size, the flow of gas in the ultrasonic nebulizer plays no part in the formation of the aerosol and serves merely as the droplet carrier. [Pg.148]

The sample solution is pumped (e.g., from the end of a liquid chromatographic column) through a capillary tube, near the end of which it is heated strongly. Over a short length of tube, some of the solvent is vaporized and expands rapidly. The remaining liquid and the expanding vapor mix and spray out the end of the tube as an aerosol. A flow of argon carries the aerosol into the plasma flame. [Pg.150]


See other pages where Plasma liquid is mentioned: [Pg.69]    [Pg.336]    [Pg.175]    [Pg.701]    [Pg.23]    [Pg.533]    [Pg.533]    [Pg.69]    [Pg.336]    [Pg.175]    [Pg.701]    [Pg.23]    [Pg.533]    [Pg.533]    [Pg.1233]    [Pg.56]    [Pg.72]    [Pg.75]    [Pg.97]    [Pg.99]    [Pg.106]    [Pg.107]    [Pg.108]    [Pg.114]    [Pg.139]    [Pg.143]    [Pg.143]    [Pg.146]    [Pg.148]    [Pg.149]   
See also in sourсe #XX -- [ Pg.274 ]




SEARCH



© 2024 chempedia.info