Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plant cell organelles plasma membrane

Most organelle membranes, such as the tonoplast (6) and the Golgi apparatus (7), can be separated by density gradient ultracentrifugation of plant cell homogenates. However, other effective methods for the isolation of the plasma membrane (8,9) have been described. Moreover, another method that uses an aqueous two-phase system for the isolation of ER is also described (10). Those interested in these details for these methods should consult the original articles. [Pg.161]

In spite of the variety of appearances of eukaryotic cells, their intracellular structures are essentially the same. Because of their extensive internal membrane structure, however, the problem of precise protein sorting for eukaryotic cells becomes much more difficult than that for bacteria. Figure 4 schematically illustrates this situation. There are various membrane-bound compartments within the cell. Such compartments are called organelles. Besides the plasma membrane, a typical animal cell has the nucleus, the mitochondrion (which has two membranes see Fig. 6), the peroxisome, the ER, the Golgi apparatus, the lysosome, and the endosome, among others. As for the Golgi apparatus, there are more precise distinctions between the cis, medial, and trans cisternae, and the TGN trans Golgi network) (see Fig. 8). In typical plant cells, the chloroplast (which has three membranes see Fig. 7) and the cell wall are added, and the lysosome is replaced with the vacuole. [Pg.302]

Several mechanisms have evolved to prevent this catastrophe. In bacteria and plants, the plasma membrane is surrounded by a nonexpandable cell wall of sufficient rigidity and strength to resist osmotic pressure and prevent osmotic lysis. Certain freshwater protists that live in a highly hypotonic medium have an organelle (contractile vacuole) that pumps water out of the cell. In multicellular animals, blood plasma and interstitial fluid (the extracellular fluid of tissues) are maintained at an osmolarity close to that of the cytosol. The high concentration of albumin and other proteins in blood plasma contributes to its osmolarity. Cells also actively pump out ions such as Na+ into the interstitial fluid to stay in osmotic balance with their surroundings. [Pg.57]

Plants must be especially versatile in their handling of carbohydrates, for several reasons. First, plants are autotrophs, able to convert inorganic carbon (as C02) into organic compounds. Second, biosynthesis occurs primarily in plastids, membrane-bounded organelles unique to plants, and the movement of intermediates between cellular compartments is an important aspect of metabolism. Third, plants are not motile they cannot move to find better supplies of water, sunlight, or nutrients. They must have sufficient metabolic flexibility to allow them to adapt to changing conditions in the place where they are rooted. Finally, plants have thick cell walls made of carbohydrate polymers, which must be assembled outside the plasma membrane and which constitute a significant proportion of the cell s carbohydrate. [Pg.751]

As we will see, the evolutionary tree is bisected into a lower prokaryotic domain and an upper eukaryotic domain. The terms prokaryote and eukaryote refer to the most basic division between cell types. The fundamental difference is that eukaryotic cells contain a membrane-bounded nucleus, whereas prokaryotes do not. The cells of prokaryotes usually lack most of the other membrane-bounded organelles as well. Plants, fungi, and animals are eukaryotes, and bacteria are prokaryotes. The biochemical functions associated with organelles are frequently present in bacteria, but they are usually located on the inner plasma membrane. [Pg.8]

A eukaryotic cell is surrounded by a plasma membrane, has a membrane-bound nucleus and contains a number of other distinct subcellular organelles (Fig. 1). These organelles are membrane-bounded structures, each having a unique role and each containing a specific complement of proteins and other molecules. Animal and plant cells have the same basic structure, although some organelles and structures are found in one and not the other (e.g. chloroplasts, vacuoles and cell wall in plant cells, lysosomes in animal cells). [Pg.5]

The bulk constituent of cells is water (H20). The cell membrane or plasma membrane (PM) that encloses the living cell is basically composed of a phospholipid bilayer, a 0.01 micrometre ( xm) (10 nm) thick bimolecular layer of hydrophobic (or water repelling) fatty molecules. In eukaryotes (organisms having a nucleus) there is a phospholipid bilayer PM enclosing the cell. Similar membranes bound specialized intracellular organelles, namely the endoplasmic reticulum (ER), ER-associated Golgi vesicles, lysosomes, vacuoles, peroxisomes, nucleus and mitochondria (and, additionally, the chloroplasts in plant cells). [Pg.52]

The plasma membrane is a major barrier to the diffusion of solutes into and out of plant cells, the organelle membranes play an analogous role for the various subcellular compartments, and the tonoplast performs this function for the central vacuole. For instance, although H20 and C02 readily penetrate the plasma membrane, ATP and metabolic intermediates usually do not diffuse across it easily. Before we mathematically describe the penetration of membranes by solutes, we will briefly review certain features of the structure of membranes. [Pg.21]

FIGURE 11-2 Lipid composition of the plasma membrane and organelle membranes of a rat hepatocyte. The functional specialization of each membrane type is reflected in its unique lipid composition. Cholesterol is prominent in plasma membranes but barely detectable in mitochondrial membranes. Cardiolipin is a major component of the inner mitochondrial membrane but not of the plasma membrane. Phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol are relatively minor components (yellow) of most membranes but serve critical functions phosphatidylinositol and its derivatives, for example, are important in signal transductions triggered by hormones. Sphingolipids, phosphatidylcholine, and phosphatidylethanolamine are present in most membranes, but in varying proportions. Clycolipids, which are major components of the chloroplast membranes of plants, are virtually absent from animal cells. [Pg.371]

Although all eukaryotic cells have much in common, the ultrastructure of a plant cell differs firom that of the typical mammalian cell in three major ways. First, all living plant cells contain plastids. Second, the plasma membrane of plant cells is shielded by the cellulosic cell wall, preventing lysis in the naturally hypotonic environment but making preparation of cell fractions more difficult. Finally, the nucleus, cytosol, and organelles are pressed against the cell wall by the tonoplast, the membrane of the large, central vacuole that can occupy 80% or more of the cell s volume. [Pg.99]

In green plants photosynthesis takes place in the membrane system of chlo-roplasts, which are large membrane-enclosed organelles. Photosynthetic bacteria have extensions of the plasma membrane into the interior of the cell called chromatophores, which are the sites of photosynthesis. [Pg.759]

Eukaryotic cells are found in protists, fungi, plants, and animals. Most eukaryotic cells are larger than prokaryotic cells. They contain many organelles, which are membrane bound areas for specific functions. Their cytoplasm contains a cytoskeleton which provides a protein framework for the cell. The cytoplasm also supports the organelles and contains the ions and molecules necessary for cell function. The cytoplasm is contained by the plasma membrane. The plasma membrane allows molecules to pass in and out of the cell. The membrane can bud inward to engulf outside material in a process called endocytosis. Exocytosis is a secretory mechanism, the reverse of endocytosis. The most significant differentiation between prokaryotes and eukaryotes is that eukaryotes have a nucleus. [Pg.42]

The cytoskeleton, found in both animal and plant cells, is composed of protein filaments attached to the plasma membrane and organelles. They provide a framework for the cell and aid in cell movement. They constantly change shape and move about. Three types of fibers make up the cytoskeleton ... [Pg.45]

The localization of enzymes of the oxylipin pathway has yet to be unequivocally elucidated. Nonetheless, LOX has been localized in plastids, vacuoles and the cytoplasm, e.g. [1], and in lipid bodies [36,37]. Since enzymes of the jasmonic acid biosynthetic pathway are thought to be localized mainly in plastids, mechanisms must exist to shuttle fatty acids released from the plasma membrane to the plastids. Furthermore, since p-oxidation of fatty acids normally occurs in peroxisomes, transport vesicles that carry the cargo between organelles may exist in plant cells. It is tempting to speculate that there could be fusion or mixing of compartments that contain either enzymes, fatty acids, and/or intermediate products, thus resulting in oxylipin biosynthesis. Intensive research is needed to address these questions as well as the cell-specific and the subcellular localization of oxylipin synthesis and the mechanisms that regulate this process. [Pg.175]


See other pages where Plant cell organelles plasma membrane is mentioned: [Pg.284]    [Pg.4]    [Pg.160]    [Pg.448]    [Pg.407]    [Pg.751]    [Pg.379]    [Pg.488]    [Pg.492]    [Pg.8]    [Pg.572]    [Pg.4]    [Pg.4]    [Pg.134]    [Pg.4]    [Pg.334]    [Pg.118]    [Pg.515]    [Pg.379]    [Pg.572]    [Pg.188]    [Pg.67]    [Pg.346]    [Pg.3]    [Pg.14]    [Pg.347]    [Pg.228]    [Pg.751]    [Pg.188]    [Pg.339]    [Pg.15]    [Pg.6717]    [Pg.429]    [Pg.143]    [Pg.187]   
See also in sourсe #XX -- [ Pg.9 , Pg.163 ]




SEARCH



Cell plasma membrane

Membranes cell organelle

Membranes plasma

Organell

Organelle membrane

Plant cell

Plant cell membranes

Plant cell organelles

© 2024 chempedia.info