Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Piperidines, oxidation

EP) and piperidine oxidation helps in synthesizing 4-vinylpyridine (VP), 4-VP N-oxide and pyridine. [Pg.114]

Triacetonamine and 2,2,6,6-tetramethyl-4-piperidinol are oxidized by the hydrogen peroxide-sodium carbonate system very selectively, giving practically a quantitative yield (45). For amine oxidation, the hydrogen peroxide-acetonitrile system is often effective enough (46,47), while for hindered piperidine oxidation, peracids can be also used. [Pg.21]

Trimethylene dibromide (Section 111,35) is easily prepared from commercial trimethj lene glycol, whilst hexamethylene dibromide (1 O dibromohexane) is obtained by the red P - Br reaction upon the glycol 1 6-hexanediol is prepared by the reduction of diethyl adipate (sodium and alcohol lithium aluminium hydride or copper-chromium oxide and hydrogen under pressure). Penta-methylene dibromide (1 5-dibromopentane) is readily produced by the red P-Brj method from the commercially available 1 5 pentanediol or tetra-hydropyran (Section 111,37). Pentamethylene dibromide is also formed by the action of phosphorus pentabromide upon benzoyl piperidine (I) (from benzoyl chloride and piperidine) ... [Pg.489]

Stigmasterol from soy bean extracts can be selectively ozonolyzed on the side-chain double bond. The 20-formyl group formed is converted to the enamine with piperidine. This can be oxidized to progesterone. [Pg.285]

In spite of the diverse nature of alkaloid structures, two structural units, i.e. fused pyrrolidine and piperidine rings in different oxidation states, appear as rather common denominators. We therefore chose to give several examples for four types of synthetic reactions which have frequently been used in alkaloid total synthesis and which provide generally useful routes to polycyclic compounds with five- or six-membered rings containing one nitrogen atom. These are ... [Pg.289]

Shipment Methods and Packaging. Pyridine (1) and pyridine compounds can be shipped in bulk containers such as tank cars, rail cars, and super-sacks, or in smaller containers like fiber or steel dmms. The appropriate U.S. Department of Transportation (DOT) requirements for labeling are given in Table 4. Certain temperature-sensitive pyridines, such as 2-vinylpyridine (23) and 4-vinylpyridine are shipped cold (<—10°C) to inhibit polymerisation. Piperidine (18) and certain piperidine salts are regulated within the United States by the Dmg Enforcement Agency (DEA) (77). Pyridines subject to facile oxidation, like those containing aldehyde and carbinol functionaUty, can be shipped under an inert atmosphere. [Pg.333]

The Perkin reaction is of importance for the iadustrial production of coumarin and a number of modifications have been studied to improve it, such as addition of a trace of iodine (46) addition of oxides or salts of metals such as iron, nickel, manganese, or cobalt (47) addition of catalytic amounts of pyridine (48) or piperidine (49) replacement of sodium acetate by potassium carbonate (50,51) or by cesium acetate (52) and use of alkaU metal biacetate... [Pg.321]

Diaminoanthraquinone is an important intermediate for vat dyes and disperse dyes, and is prepared by oxidizing leuco-l,4-diaminoanthraquinone with nitrobenzene in the presence of piperidine. An improved process has been reported (45). [Pg.312]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

The reactivity of halogens in pyridazine N- oxides towards nucleophilic substitution is in the order 5 > 3 > 6 > 4. This is supported by kinetic studies of the reaction between the corresponding chloropyridazine 1-oxides and piperidine. In general, the chlorine atoms in pyridazine A-oxides undergo replacement with alkoxy, aryloxy, piperidino, hydrazino, azido, hydroxylamino, mercapto, alkylmercapto, methylsulfonyl and other groups. [Pg.27]

Piperidine, l-(2-hydroxythiobenzoyI)-neutron diffraction, 2, 116 Piperidine, 4-hydroxy-2,2,6-trimethyI-as local anaesthetic, 1, 179 Piperidine, JV-methoxycarbonyl-electrolytic oxidation, 2, 374 Piperidine, 2-methyl-synthesis, 2, 524 Piperidine, 3-methyI-mass spectrometry, 2, 130 Piperidine, C-methyl-NMR, 2, 160 Piperidine, JV-methyl- C chemical shifts, 2, 15 catalyst... [Pg.746]

Piperidin-4-one N-oxide, 2,2,6,6-tetramethyl-solvent effects, 2, 146 Piperidinones stability, 2, 159-161 synthesis, 2, 81, 95 from S-aminopentanoic acids, 2, 402 Piperidin-2-ones IR spectroscopy, 2, 130 synthesis... [Pg.747]

The formation of these oxidation products, and, in particular, o tropinic acid, led Merling to represent tropine as a bieyclic systen composed of a piperidine and a hexahydrobenzene ring with four carbo ... [Pg.76]

Formula (VI) has received support in two ways. The investigations of Winterfeld (with Ronsberg) on the oxidation of dehydrosparteine methoaeetate and of a-didehydrosparteine, indicated thatD was a piperidine ring and this was finally established by Clemo, Morgan and Raper a... [Pg.130]

The cyclic thioketone, 3-oxotctrahydrothiophene (11), gives a mixture of enamines (12,13) when caused to react with a secondary amine such as piperidine or pyrrolidine (31). The enamine mixture can be reduced to the 3-aminotetrahydrothiophene using formic acid or oxidized to the 3-amino-thiophene using diisopentylsulfide. [Pg.58]

To return to a more historical development the mercuric acetate oxidation of substituted piperidines (77) should be discussed next. This study established that the normal order of hydrogen removal from the aW-carbon is tertiary —C—H > secondary —C—H > primary —C—H, an observation mentioned earlier in this section. The effect of substitution variations in the piperidine series can be summarized as follow s l-mcthyl-2,6-dialkyl and 1-methyl-2,2,6-trialkyl piperidines, as model systems, are oxidized to the corresponding enamines the 1,2-dialkyl and l-methyl-2,5-dialkyl piperidines are oxidized preferentially at the tertiary a-carbon the 1-methyl-2,3-dialkyl piperidines gave not only the enamines formed by oxidation at the tertiary a-carbon but also hydroxylated enamines as found for 1-methyl-decahydroquinoline (48) (62) l-methyl-2,2,6,6-tctraalkyl piperidines and piperidine are resistant to oxidation by aqueous mercuric acetate and... [Pg.71]

A kinetic study of the mercuric acetate oxidation of l-alkyl-3,5-dimethyl-piperidines (81) and 3-alkyl-3-azabicyclo[3.3.1]nonanes (82) was made to evaluate the effect of the N-alkyl group on the rate of oxidation and to contrast these two ring systems (70). The maximum factor in the piperidine... [Pg.77]

Second-order kinetics are reported for the reactions of halogeno-quinoline iV -oxides with piperidine in several solvents and of halo-geno-nitrothiophenes with piperidine in ethanol. ... [Pg.293]


See other pages where Piperidines, oxidation is mentioned: [Pg.20]    [Pg.303]    [Pg.575]    [Pg.499]    [Pg.351]    [Pg.20]    [Pg.303]    [Pg.575]    [Pg.499]    [Pg.351]    [Pg.334]    [Pg.570]    [Pg.99]    [Pg.490]    [Pg.421]    [Pg.74]    [Pg.19]    [Pg.26]    [Pg.45]    [Pg.86]    [Pg.145]    [Pg.439]    [Pg.78]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Oxidation of piperidine

Piperidine anodic oxidation

Piperidine chlorochromate oxidation with

Piperidine, 1- -, oxidative

Tetramethyl piperidine oxide

Tetramethyl piperidine oxide TEMPO)

© 2024 chempedia.info