Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical refractories

The immobility of the surface atoms of a refractory solid has the consequence that the surface energy and other physical properties depend greatly on the immediate history of the material. A clean cleavage surface of a crystal will have a different (and probably lower) surface energy than a ground, abraded, heat-treated or polished surface of the same material. [Pg.259]

With the exception of glass fiber, asbestos (qv), and the specialty metallic and ceramic fibers, textile fibers are a class of soHd organic polymers distinguishable from other polymers by their physical properties and characteristic geometric dimensions (see Glass Refractory fibers). The physical properties of textile fibers, and indeed of all materials, are a reflection of molecular stmcture and intermolecular organization. The abiUty of certain polymers to form fibers can be traced to several stmctural features at different levels of organization rather than to any one particular molecular property. [Pg.271]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

Most hafnium compounds have been of slight commercial interest aside from intermediates in the production of hafnium metal. However, hafnium oxide, hafnium carbide, and hafnium nitride are quite refractory and have received considerable study as the most refractory compounds of the Group 4 (IVB) elements. Physical properties of some of the hafnium compounds are shown in Table 4. [Pg.444]

Physical Properties. Molybdenum has many unique properties, leading to its importance as a refractory metal (see Refractories). Molybdenum, atomic no. 42, is in Group 6 (VIB) of the Periodic Table between chromium and tungsten vertically and niobium and technetium horizontally. It has a silvery gray appearance. The most stable valence states are +6, +4, and 0 lower, less stable valence states are +5, +3, and +2. [Pg.463]

Refractories are materials that resist the action of hot environments by containing heat energy and hot or molten materials (1). There is no weU-estabhshed line of demarcation between those materials that are and those that are not refractory. The abiUty to withstand temperatures above 1100°C without softening has, however, been cited as a practical requirement of industrial refractory materials (see Ceramics). The type of refractories used in any particular apphcation depends on the critical requirements of the process. For example, processes that demand resistance to gaseous orHquid corrosion require low permeabihty, high physical strength, and abrasion resistance. Conditions that demand low thermal conductivity may require entirely different refractories. Combinations of several refractories are generally employed. [Pg.22]

Table 5. Physical Properties of Alumina, Silica, and Zirconia Refractory Brick ... Table 5. Physical Properties of Alumina, Silica, and Zirconia Refractory Brick ...
Mechanical Properties. The physical properties of a particular refractory product depend on its constituents and manner in which these were assembled. The physical properties may be varied to suit specific appHcations. For example, for thermal insulations highly porous products are employed, whereas dense products are used for slagging or abrasive conditions. [Pg.29]

Refractoriness. Most refractories are mixtures of different oxides, sometimes with significant quantities of impurities. Thus, they do not have sharp melting points but a softening range. Refractoriness is the resistance to physical deformation under the influence of temperature. It is determined by the pyrometric cone equivalent (PCE) test for aluminosiHcates and resistance to creep or shear at high temperature (see Analytical methods). [Pg.30]

Any manufacturing process requiring refractories depends on proper selection and installation. When selecting refractories, environmental conditions are evaluated first, then the functions to be served, and finally the expected length of service. AH factors pertaining to the operation, service design, and constmction of equipment must be related to the physical and chemical properties of the various classes of refractories (35). [Pg.36]

Fiber chemistry determines whether the material is an oxide or nonoxide and can also influence its vitreous or polycrystalline physical form. Refractory fibers generally have diameters ranging from submicrometer to 10 )J.m, and lengths, as manufactured, may range from millimeters to continuous filaments. [Pg.53]

The most important properties of refractory fibers are thermal conductivity, resistance to thermal and physical degradation at high temperatures, tensile strength, and elastic modulus. Thermal conductivity is affected by the material s bulk density, its fiber diameter, the amount of unfiberized material in the product, and the mean temperature of the insulation. Products fabricated from fine fibers with few unfiberized additions have the lowest thermal conductivities at high temperatures. A plot of thermal conductivity versus mean temperature for three oxide fibers having equal bulk densities is shown in Figure 2. [Pg.54]

Aluminosilicate Fibers. Vitreous alurninosihcate fibers, more commonly known as refractory ceramic fibers (RCF), belong to a class of materials known as synthetic vitreous fibers. Fiber glass and mineral wool are also classified as synthetic vitreous fibers, and together represent 98% of this product group. RCFs were discovered in 1942 (18) but were not used commercially until 1953. Typical chemical and physical properties of these materials are shown in Table 3. [Pg.56]

Table 3. Typical Physical and Chemical Properties of Refractory Ceramic Fibers... Table 3. Typical Physical and Chemical Properties of Refractory Ceramic Fibers...
Refractories. Its low coefficient of expansion, high thermal conductivity, and general chemical and physical stabihty make sihcon carbide a valuable material for refractory use. Suitable apphcations for sihcon carbide refractory shapes include boiler furnace walls, checker bricks, mufflers, kiln furniture, furnace skid rails, trays for zinc purification plants, etc (see Refractories). [Pg.468]

Refractories are available in three general physical forms solids in the form of brick and monohthic castable ceramics and as ceramic fibers. [Pg.2471]

Vanadium-Sodium Compounds Most Corrosive. Physical property data for vanadates, phase diagrams, laboratory experiments, and numerous field investigations have shown that the sodium vanadates are the lowest melting compounds and are the most corrosive to metals and refractories. These compounds are thought to form by either the vapor phase reaction of NaCI and V2O5 or by the combination of fine droplets of these materials upon the cooler parts of combustion equipment. [Pg.265]

In particular, emphasis will be placed on the use of chemisorption to measure the metal dispersion, metal area, or particle size of catalytically active metals supported on nonreducible oxides such as the refractory oxides, silica, alumina, silica-alumina, and zeolites. In contrast to physical adsorption, there are no complete books devoted to this aspect of catalyst characterization however, there is a chapter in Anderson that discusses the subject. [Pg.740]

The determination of precise physical properties for elemental boron is bedevilled by the twin difficulties of complex polymorphism and contamination by irremovable impurities. Boron is an extremely hard refractory solid of high mp, low density and very low electrical conductivity. Crystalline forms are dark red in transmitted light and powdered forms are black. The most stable ()3-rhombohedral) modification has mp 2092°C (exceeded only by C among the non-metals), bp 4000°C, d 2.35 gcm (a-rhombohedral form 2.45gcm ), A77sublimation 570kJ per mol of B, electrical conductivity at room temperature 1.5 x 10 ohm cm- . [Pg.144]

Boron is a covalently bonded, refractory, non-metallic insulator of great hardness and is thus not directly comparable in its physical properties with Al, Ga, In and Tl, which are all low-melting, rather soft metals having a very low electrical... [Pg.222]


See other pages where Physical refractories is mentioned: [Pg.147]    [Pg.147]    [Pg.572]    [Pg.591]    [Pg.1106]    [Pg.79]    [Pg.314]    [Pg.320]    [Pg.110]    [Pg.132]    [Pg.313]    [Pg.342]    [Pg.136]    [Pg.465]    [Pg.50]    [Pg.53]    [Pg.202]    [Pg.24]    [Pg.27]    [Pg.36]    [Pg.56]    [Pg.212]    [Pg.316]    [Pg.440]    [Pg.577]    [Pg.246]    [Pg.531]    [Pg.2452]    [Pg.823]    [Pg.377]    [Pg.1308]   
See also in sourсe #XX -- [ Pg.112 ]




SEARCH



Refractory castables physical properties

Refractory physical properties

© 2024 chempedia.info