Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties analysis

Elemental composition Cl 54.16%, N 21.40%, O 24.44%. The compound can be identified by its color and other physical properties. Analysis may be done by GC/MS using a diluent gas such as helium. Alternatively, it may be added to an olefinic double bond and the derivatives identified by physical properties, IR, and mass spectra. (See Reactions.)... [Pg.659]

A perfect crystal structure model is very helpful for theoretical calculations, reaction mechanism analysis, and some physical property analysis such as conductivity, magnetic susceptibility, chemical potential, etc. Powder XRD (or neutron diffraction) Rietveld refinement is one of the most popular methods used to characterize crystal structure. [Pg.27]

J N Baumgartner, C Z Yang and S L Cooper, Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes, Biomaterials, 1997 18 (12) 831-37. [Pg.115]

These fascinating bicontinuous or sponge phases have attracted considerable theoretical interest. Percolation theory [112] is an important component of such models as it can be used to describe conductivity and other physical properties of microemulsions. Topological analysis [113] and geometric models [114] are useful, as are thermodynamic analyses [115-118] balancing curvature elasticity and entropy. Similar elastic modulus considerations enter into models of the properties and stability of droplet phases [119-121] and phase behavior of microemulsions in general [97, 122]. [Pg.517]

In general, the first step in virtual screening is the filtering by the application of Lipinski s Rule of Five [20]. Lipinski s work was based on the results of profiling the calculated physical property data in a set of 2245 compounds chosen from the World Drug Index. Polymers, peptides, quaternary ammonium, and phosphates were removed from this data set. Statistical analysis of this data set showed that approximately 90% of the remaining compounds had ... [Pg.607]

In Section lA we indicated that analytical chemistry is more than a collection of qualitative and quantitative methods of analysis. Nevertheless, many problems on which analytical chemists work ultimately involve either a qualitative or quantitative measurement. Other problems may involve characterizing a sample s chemical or physical properties. Finally, many analytical chemists engage in fundamental studies of analytical methods. In this section we briefly discuss each of these four areas of analysis. [Pg.8]

An analysis in which we evaluate a sample s chemical or physical properties. [Pg.9]

The first important distinction we will make is among the terms analysis, determination, and measurement. An analysis provides chemical or physical information about a sample. The components of interest in the sample are called analytes, and the remainder of the sample is the matrix. In an analysis we determine the identity, concentration, or properties of the analytes. To make this determination we measure one or more of the analyte s chemical or physical properties. [Pg.36]

Standard test methods for chemical analysis have been developed and pubUshed (74). Included is the determination of commonly found chemicals associated with acrylonitrile and physical properties of acrylonitrile that are critical to the quaUty of the product (75—77). These include determination of color and chemical analyses for HCN, quiaone inhibitor, and water. Specifications appear in Table 10. [Pg.185]

The pubHcations detailing standards (5—8) generally include both specifications and methods of analysis for the substances. The estabHshment of standards of quaHty for chemicals of any kind presupposes the abiHty to set numerical limits on physical properties, allowable impurities, and strength, and to provide the test methods by which conformity to the requirements may be demonstrated. Tests are considered appHcable only to the specific requirements for which they were written. Modification of a requirement, especially if the change is toward a higher level of purity, often necessitates revision of the test to ensure the test s vaHdity. [Pg.444]

The first step is to have a complete and detailed description of the system, process, or procedure under consideration. This must include physical properties of the materials, operating temperatures and pressures, detailed flow sheets, instmment diagrams of the process, materials of constmction, other detailed design specifications, and so forth. The more detailed and up-to-date this information is, the better the result of the analysis. [Pg.469]

The thermal conductivity of gas-phase deuterium is about 0.73 times that of gas-phase hydrogen. This thermal conductivity difference offers a convenient method for analysis of H2—D2 mixtures. Other physical properties of D2, T2, HD, DT, and HT are Hsted in the Hterature (60). [Pg.414]

Conduct Hazard Analysis and Risk Assessment. Ahazardis any biological, chemical, or physical property that may cause an unacceptable consumer health risk. AH of the potential hazards in the food chain are analyzed, from growing and harvesting or slaughtering to manufacturing, distribution, retailing, and consumption of the product. [Pg.33]

T. Cairns and J. Sherma, eds.. Comprehensive Analytical Profiles of Important Pesticides, CRC Press, Boca Raton, Fla., 1992, 304 pp. From the series ModemMethods for Pesticide Analysis, provides detailed information on properties and analytical methodology for nine prominent pesticides, pyrethroids, and fumigants in food. Includes formulations and uses, chemical and physical properties, toxicity data, and tolerances on various foods and feeds. Analytical information may be given in enough detail for methods to be carried out without having to consult additional Hterature sources. [Pg.153]

Thermal analysis iavolves techniques ia which a physical property of a material is measured agaiast temperature at the same time the material is exposed to a coatroUed temperature program. A wide range of thermal analysis techniques have been developed siace the commercial development of automated thermal equipment as Hsted ia Table 1. Of these the best known and most often used for polymers are thermogravimetry (tg), differential thermal analysis (dta), differential scanning calorimetry (dsc), and dynamic mechanical analysis (dma). [Pg.149]

There are tests for physical properties such as deasity and hardness (qv) of plastics. Microscopy (qv) is important ia fracture analysis as well as ia analysis of the morphology of polymer systems for an understanding of polymer blend performance. [Pg.156]

Vinyltoluene (VT) is a mixture of meta- and i ra-vinyltoluenes, typically in the ratio of 60 40. This isomer ratio results from the ratio of the corresponding ethyltoluenes in thermodynamic equiHbrium. Physical properties and chemical analysis of a typical vinyltoluene product are shown in Tables 7 and 8, respectively. Vinyltoluene monomer is produced by Dow Chemical Company and Fina Oil Chemical Company. The worldwide consumption is estimated to be approximately 100,000 t/yr. [Pg.488]

Among the techniques employed to estimate the average molecular weight distribution of polymers are end-group analysis, dilute solution viscosity, reduction in vapor pressure, ebuUiometry, cryoscopy, vapor pressure osmometry, fractionation, hplc, phase distribution chromatography, field flow fractionation, and gel-permeation chromatography (gpc). For routine analysis of SBR polymers, gpc is widely accepted. Table 1 lists a number of physical properties of SBR (random) compared to natural mbber, solution polybutadiene, and SB block copolymer. [Pg.493]

Descriptions of sulfuric acid analytical procedures not specified by ASTM are available (32,152). Federal specifications also describe the requited method of analysis. Concentrations of 78 wt % and 93 wt % H2SO4 are commonly measured indirectly by determining specific gravity. Higher acid concentrations are normally determined by titration with a base, or by sonic velocity or other physical property for plant control. Sonic velocity has been found to be quite accurate for strength analysis of both filming and nonfuming acid. [Pg.192]

Chemical Assay. In view of the similarity of their chemical and physical properties (see Table 1) (29), the main problem in the chemical analysis of the thyroid hormones is their separation. A USP procedure gives the details of a paper chromatographic separation in which T is examined for contamination by T and 3,5-diiodothyroiiine (30). Other systems are also employed (29). [Pg.51]


See other pages where Physical properties analysis is mentioned: [Pg.458]    [Pg.483]    [Pg.398]    [Pg.458]    [Pg.61]    [Pg.859]    [Pg.65]    [Pg.1]    [Pg.1]    [Pg.458]    [Pg.483]    [Pg.398]    [Pg.458]    [Pg.61]    [Pg.859]    [Pg.65]    [Pg.1]    [Pg.1]    [Pg.366]    [Pg.1081]    [Pg.377]    [Pg.235]    [Pg.770]    [Pg.1064]    [Pg.283]    [Pg.378]    [Pg.414]    [Pg.18]    [Pg.63]    [Pg.151]    [Pg.246]    [Pg.359]    [Pg.142]    [Pg.515]    [Pg.475]    [Pg.60]    [Pg.342]    [Pg.531]   
See also in sourсe #XX -- [ Pg.413 , Pg.417 , Pg.916 ]




SEARCH



Chemical analyses and physical property

Chemical analyses and physical property measurements

Dimensional analysis variable physical properties

Physical Properties. Structures, and Analysis

Starch Structure, Properties and Physical Methods of Analysis

Treatment of Variable Physical Properties by Dimensional Analysis

© 2024 chempedia.info