Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical interferences atomic optical spectrometry

For all the techniques of optical atomic spectrometry, the samples (solutions and/or solid samples) must be converted into an atomic vapour. The sensitivity is strongly dependent on the yield of this process, as are the chemical and physical interferences, i.e. the specificity of the method in general. For the first approach, the atomization of the sample is proportional and the occurrence of chemical and/or physical interferences is inversely proportional to the excitation temperature. Therefore the temperature available in the atomization stage should be as high as possible. The classical excitation sources used in atomic spectrometry like flame, graphite furnace, arc and spark are well known. The temperature available, especially in a flame or in the graphite furnace, is around 3000°C. Due to the Boltzmann-distribution... [Pg.92]

Interferences are physical or chemical processes that cause the signal from the analyte in the sample to be higher or lower than the signal from an equivalent standard. Interferences can therefore cause positive or negative errors in quantitative analysis. There are two major classes of interferences in AAS, spectral interferences and nonspectral interferences. Nonspectral interferences are those that affect the formation of analyte free atoms. Nonspectral interferences include chemical interference, ionization interference, and solvent effects (or matrix interference). Spectral interferences cause the amount of light absorbed to be erroneously high due to absorption by a species other than the analyte atom. While all techniques suffer from interferences to some extent, AAS is much less prone to spectral interferences and nonspectral interferences than atomic anission spectrometry and X-ray fluorescence (XRF), the other major optical atomic spectroscopic techniques. [Pg.466]

The basic instrumentation used for spectrometric measurements has already been described in the previous chapter (p. 277). Methods of excitation, monochromators and detectors used in atomic emission and absorption techniques are included in Table 8.1. Sources of radiation physically separated from the sample are required for atomic absorption, atomic fluorescence and X-ray fluorescence spectrometry (cf. molecular absorption spectrometry), whereas in flame photometry, arc/spark and plasma emission techniques, the sample is excited directly by thermal means. Diffraction gratings or prism monochromators are used for dispersion in all the techniques including X-ray fluorescence where a single crystal of appropriate lattice dimensions acts as a grating. Atomic fluorescence spectra are sufficiently simple to allow the use of an interference filter in many instances. Photomultiplier detectors are used in every technique except X-ray fluorescence where proportional counting or scintillation devices are employed. Photographic recording of a complete spectrum facilitates qualitative analysis by optical emission spectrometry, but is now rarely used. [Pg.288]


See other pages where Physical interferences atomic optical spectrometry is mentioned: [Pg.1555]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Atom optics

Atomic interferences

Atomic physics

Atomic spectrometry physical interferences

Atoms physics

Interference optics

Optical interference

Optical spectrometry

Physical interferences

Physical optics

© 2024 chempedia.info