Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical curing

Most of the recent papers deal with PEO and other polymers incorporated with inert fillers [30, 40-53], which also have poor mechanical properties. These films have to be hardened by chemical or physical curing, which leads to high processing costs. Recent studies reveal that only composite polymer electrolytes incorporated with inorganic filler can offer mechanically strong and safe batteries with improved electrolyte-electrode compatibility. One of the functions of the fillers is also the reduction of crystallinity of the host matrix. [Pg.937]

The physical properties of the monomers must be discussed along with those of the cured polymers because consideration of one without the other presents an incomplete picture. The 2-cyanoacryhc ester monomers are all thin, water-clear Hquids with viscosities of 1 3 mPa-s(=cP). Although a number of the esters have been prepared and characterized, only a relative few are of any significant commercial interest, and, of those, the methyl and ethyl esters by far predominate. The physical properties of the principal monomers are included in Table 1. [Pg.176]

Chemical Stabilization Processes. This method is more versatile and thus has been used successfully for more materials than the physical stabilization process. Chemical stabilization is more adaptable for condensation polymers than for vinyl polymers because of the fast yet controUable curing reactions and the absence of atmospheric inhibition. [Pg.405]

An ink is considered dry when a print does not stick or transfer to another surface pressed into contact with it. Drying is accompHshed by one or more of the following physical or chemical mechanisms absorption, evaporation, precipitation, oxidation, polymerization, cold setting, gelation, and radiation curing. [Pg.247]

Binders and Resins. The choice of binder is the most important ingredient choice in the formulation process because the binder affects the performance properties of a paint more than any other single ingredient (3). The physical properties of binders required for paints include the abiHty to dry or cure under various ambient conditions, good adhesion to various substrates, abrasion resistance, washabiHty, flexibiHty, water resistance, and ultraviolet light resistance. The balance of these required properties is mosdy dependent on whether the paint is being developed for interior or exterior appHcations. [Pg.540]

Waferboard, a more recent wood constmction product, competes more with plywood than particle board. Waferboard and strand board are bonded with soHd, rather than Hquid, phenoHc resins. Both pulverized and spray-dried, rapid-curing resins have been successfully appHed. Wafers are dried, dusted with powdered resin and wax, and formed on a caul plate. A top caul plate is added and the wafers are bonded in a press at ca 180°C for 5—10 min. Physical properties such as flexural strength, modulus, and internal bond are similar to those of a plywood of equivalent thickness. [Pg.306]

Other techniques include oxidative, steam atmosphere (33), and molten salt (34) pyrolyses. In a partial-air atmosphere, mbber pyrolysis is an exothermic reaction. The reaction rate and ratio of pyrolytic filler to ok products are controlled by the oxygen flow rate. Pyrolysis in a steam atmosphere gives a cleaner char with a greater surface area than char pyroly2ed in an inert atmosphere however, the physical properties of the cured compounded mbber are inferior. Because of the greater surface area, this pyrolytic filler could be used as activated carbon, but production costs are prohibitive. Molten salt baths produce pyroly2ed char and ok products from tine chips. The product characteristics and quantities depend on the salt used. Recovery of char from the molten salt is difficult. [Pg.15]

Vinyl Acetate—Ethylene Copolymers. In these random copolymers, the ratio of ethylene to vinyl acetate (EVA) is varied from 30—60%. As the vinyl acetate content increases, the oil and heat resistance increases. With higher ethylene content the physical strength, tensile, and tear increases. The polymers are cured with peroxide. The main properties of these elastomers include heat resistance, moderate oil and solvent resistance, low compression set, good weather resistance, high damping, exceUent o2one resistance, and they can be easily colored (see Vinyl polymers, poly(VINYL acetate)). [Pg.234]

Vulcani2ation is a chemical process for improving an elastomer compound s performance. However, in most cases not all of the desired properties reach their optimum levels simultaneously. One of the mbber compounder s key responsibiHties is to achieve a balance of the most important property requirements by the proper selection of cure system (chemical) and time—temperature cure cycle (physical). [Pg.234]

Conventional cure systems use relatively high levels (2.5 + phr) of sulfur combkied with lower levels of accelerator(s). These typically provide high initial physical properties, tensile and tear strengths, and good initial fatigue life, but with a greater tendency to lose these properties after heat aging. [Pg.238]

In contrast, the EV cure systems employ much lower levels of free sulfur (0.1—1.0 phr) or they use sulfur donors such as TMTD or DTDM combkied with higher accelerator levels. The short mono- and disulfide cross-links that form often do not exhibit the excellent physical properties of the conventional systems but they do retain thek properties much better after aging. [Pg.238]

There are many ways to measure these properties and some of them are proprietary. However, most laboratory tests are standardized by American Standard Testing Methods (ASTM). Many of them are interactive to various degrees. The rate and state of vulcanization is especially important to consider for components of heavier and thicker tines. The heat used to vulcanize the tine in a mold under pressure requites time to penetrate from both sides of the giant tine to the innermost portions. Securing a balanced state of cure, ie, the maximizing of physical properties in all the components, results in the innermost components having a faster rate of cure. The peripheral compounds should have a cure system which holds its physical properties well when overcured. [Pg.248]


See other pages where Physical curing is mentioned: [Pg.100]    [Pg.216]    [Pg.216]    [Pg.301]    [Pg.396]    [Pg.685]    [Pg.486]    [Pg.866]    [Pg.82]    [Pg.82]    [Pg.100]    [Pg.216]    [Pg.216]    [Pg.301]    [Pg.396]    [Pg.685]    [Pg.486]    [Pg.866]    [Pg.82]    [Pg.82]    [Pg.442]    [Pg.232]    [Pg.234]    [Pg.234]    [Pg.32]    [Pg.32]    [Pg.32]    [Pg.39]    [Pg.47]    [Pg.49]    [Pg.233]    [Pg.405]    [Pg.201]    [Pg.201]    [Pg.534]    [Pg.33]    [Pg.145]    [Pg.361]    [Pg.457]    [Pg.458]    [Pg.458]    [Pg.11]    [Pg.251]    [Pg.422]    [Pg.422]    [Pg.427]    [Pg.429]    [Pg.235]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



© 2024 chempedia.info