Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photons description

The thermal motion naturally found within a solid matrix results in the propagation of acoustic waves from lattice nodes. Comparable with the photon description of electromagnetic radiation these acoustic waves can be described as phonons and are similarly quantized. The density of phonons pa of a particular frequency co (v/2tt), in a solid continuum that contains N atoms in a sample of volume V has been deduced by Abragam [3] to be,... [Pg.79]

In absorption spectroscopy, the attenuation of light as it passes tln-ough a sample is measured as a function of wavelength. The attenuation is due to rovibrational or electronic transitions occurring in the sample. Mapping out the attenuation versus photon frequency gives a description of the molecule or molecules responsible for the absorption. The attenuation at a particular frequency follows the Beer-Lambert law,... [Pg.805]

Figure B2.5.11. Schematic set-up of laser-flash photolysis for detecting reaction products with uncertainty-limited energy and time resolution. The excitation CO2 laser pulse LP (broken line) enters the cell from the left, the tunable cw laser beam CW-L (frill line) from the right. A filter cell FZ protects the detector D, which detennines the time-dependent absorbance, from scattered CO2 laser light. The pyroelectric detector PY measures the energy of the CO2 laser pulse and the photon drag detector PD its temporal profile. A complete description can be found in [109]. Figure B2.5.11. Schematic set-up of laser-flash photolysis for detecting reaction products with uncertainty-limited energy and time resolution. The excitation CO2 laser pulse LP (broken line) enters the cell from the left, the tunable cw laser beam CW-L (frill line) from the right. A filter cell FZ protects the detector D, which detennines the time-dependent absorbance, from scattered CO2 laser light. The pyroelectric detector PY measures the energy of the CO2 laser pulse and the photon drag detector PD its temporal profile. A complete description can be found in [109].
The simplest theoretical description of the photon capture cross-section is given by Fermi s Golden Rule... [Pg.268]

This article focuses primarily on the properties of the most extensively studied III—V and II—VI compound semiconductors and is presented in five sections (/) a brief summary of the physical (mechanical and electrical) properties of the 2incblende cubic semiconductors (2) a description of the metal organic chemical vapor deposition (MOCVD) process. MOCVD is the preferred technology for the commercial growth of most heteroepitaxial semiconductor material (J) the physics and (4) apphcations of electronic and photonic devices and (5) the fabrication process technology in use to create both electronic and photonic devices and circuits. [Pg.365]

Nearly all these techniques involve interrogation of the surface with a particle probe. The function of the probe is to excite surface atoms into states giving rise to emission of one or more of a variety of secondary particles such as electrons, photons, positive and secondary ions, and neutrals. Because the primary particles used in the probing beam can also be electrons or photons, or ions or neutrals, many separate techniques are possible, each based on a different primary-secondary particle combination. Most of these possibilities have now been established, but in fact not all the resulting techniques are of general application, some because of the restricted or specialized nature of the information obtained and others because of difficult experimental requirements. In this publication, therefore, most space is devoted to those surface analytical techniques that are widely applied and readily available commercially, whereas much briefer descriptions are given of the many others the use of which is less common but which - in appropriate circumstances, particularly in basic research - can provide vital information. [Pg.2]

Next we establish the connection of the previous formalism with the Fo< space description of photons. From the interpretation of a>(k) as the number operator for photons of momentum k polarization A, and of cA(k) and cA(k) as destruction and creation operators for... [Pg.569]

Strictly speaking the description of such local measurements can be carried out only within the framework of quantum electrodynamics, i.e, in a theory wherein photons can be exchanged between the measuring apparatus and the current distribution being measured. [Pg.587]

Flow, control of, 265 Flow function on network, 258 Flow, optimal, method for, 261 Fock amplitude for one-particle system, 511 Fock space, 454 amplitudes, 570 description of photons, 569 representation of operators in, 455 Schrodinger equation in, 459 vectors in, 454 Focus, 326 weak, 328... [Pg.774]

The book is divided into three major parts. The first covers a theoretical examination of the CVD process, a description of the major chemical reactions and a review of the CVD systems and equipment used in research and production, including the advanced subprocesses such as plasma, laser, and photon CVD. [Pg.4]

To obtain single photon pulses, one can use the emission by a single dipole as shown below in section 21.3.1. The experiment was performed in 1977 by Kimble, Dagenais and Mandel (Kimble et al., 1977). They showed that single atoms from an atomic beam emitted light which, at small time scales, exhibited a zero correlation function. This result can not be explained through a semiclassical theory and requests a quantum description of light. [Pg.354]

The importance and sophistication of current chemical manufacturing processes for electronic, photonic, and recording materials and devices are not widely appreciated. A more detailed description serves to highlight their central role in these technologies. [Pg.53]

The new delightful book by Greenstein and Zajonc(9) contains several examples where the outcome of experiments was not what physicists expected. Careful analysis of the Schrddinger equation revealed what the intuitive argument had overlooked and showed that QM is correct. In Chapter 2, Photons , they tell the story that Einstein got the Nobel Prize in 1922 for the explaining the photoelectric effect with the concept of particle-like photons. In 1969 Crisp and Jaynes(IO) and Lamb and Scullyfl I) showed that the quantum nature of the photoelectric effect can be explained with a classical radiation field and a quantum description for the atom. Photons do exist, but they only show up when the EM field is in a state that is an eigenstate of the number operator, and they do not reveal themselves in the photoelectric effect. [Pg.26]

A phenomenological description of the differential cross-section for emission of photoelectrons into solid angle O in the lab frame can be written, assuming random molecular orientation and an axis of cylindrical symmetry defined by the photon polarization, as... [Pg.275]

In the description of nuclear y-resonance, we assume that the photon emitted by a nucleus of mean energy Eq = E —Eg carries the entire energy, Ey = Eq. This is not true for nuclei located in free atoms or molecules, because the photon has... [Pg.10]

In this chapter, we first present a brief overview of the experimental techniques that we and others have used to study torsional motion in S, and D0 (Section II). These are resonant two-photon ionization (R2PI) for S,-S0 spectroscopy and pulsed-field ionization (commonly known as ZEKE-PFI) for D0-S, spectroscopy. In Section HI, we summarize what is known about sixfold methyl rotor barriers in S0, S, and D0, including a brief description of how the absolute conformational preference can be inferred from spectral intensities. Section IV describes the threefold example of o-cholorotoluene in some detail and summarizes what is known about threefold barriers more generally. The sequence of molecules o-fluorotoluene, o-chlorotoluene, and 2-fluoro-6-chlorotoluene shows the effects of ort/io-fluoro and ortho-chloro substituents on the rotor potential. These are approximately additive in S0, S, and D0. Finally, in Section V, we present our ideas about the underlying causes of these diverse barrier heights and conformational preferences, based on analysis of the optimized geometries and electronic wavefunctions from ab initio calculations. [Pg.159]

An analytical description of the photon-economy and additive noise could be carried out by the estimation of the Fisher-information matrix of the used estimators [34],... [Pg.128]

Excitation and ionization have a common origin-namely, raising the electronic level of an atom or a molecule from its ground state to a state of higher energy via the impact of charged particles or photons. Nevertheless, their chemical fates can be drastically different. In this chapter, we treat these phenomena descriptively. [Pg.71]


See other pages where Photons description is mentioned: [Pg.644]    [Pg.174]    [Pg.567]    [Pg.644]    [Pg.174]    [Pg.567]    [Pg.265]    [Pg.312]    [Pg.1151]    [Pg.1274]    [Pg.1325]    [Pg.1591]    [Pg.153]    [Pg.369]    [Pg.452]    [Pg.20]    [Pg.304]    [Pg.210]    [Pg.400]    [Pg.58]    [Pg.488]    [Pg.550]    [Pg.562]    [Pg.573]    [Pg.352]    [Pg.354]    [Pg.71]    [Pg.6]    [Pg.25]    [Pg.125]    [Pg.98]    [Pg.20]    [Pg.45]    [Pg.128]    [Pg.138]   
See also in sourсe #XX -- [ Pg.476 ]




SEARCH



Classification and Phenomenological Descriptions of Selected Photon Detection Mechanisms

Description of electron and photon polarization

© 2024 chempedia.info