Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoionizing laser

The resolution of photoion laser microscopy is limited by two fundamental factors [7] the Heisenberg principle of uncertainty and the presence of the nonzero tangential component of the velocity of the ejected photoion (photoelectron). The same factors restrict the spatial resolution of the field-ion microscopy. It must be emphasized again that the key difference lies in the fact that for photoion microscopy there is no need for a strong (ionizing) electric field that distorts and desorbs the molecules. And also, the femtosecond laser radiation allows the photoion to be photoselectively extracted from certain parts of a molecule. [Pg.876]

One might think that the specific wavelength of the photoionization laser is of little import as long as it sufficiently exceeds the ionization potential. In Fig. 7, the results of the same experiment, but repeated this time using a probe laser wavelength of 235 nm, are presented. As the pump laser remained invariant, the same excited-state wave packet was prepared in these two experiments. Contrasting with the 352 nm probe experiment, we see that the parent ion signal does not decay in 0.4 ps, but rather remains almost constant,... [Pg.534]

In closing this section, we note that although the Koopmans picture is a simplification of the ionization dynamics, it provides a very useful zeroth order picture from which to consider the TRPES results. Any potential failure of this independent electron picture can always be experimentally tested directly through variation of the photoionization laser frequency resonance structures should lead to variations in the form of the spectra with electron kinetic energy, although the effect of resonances is more likely to be prominent in PAD measurements, and indeed an observation of a shape resonance in p-difluorobenzene has been reported [153, 154]. [Pg.542]

Figure 36. N2P-PFI-PE spectrum for H2S in the region of 42,194-42,248 cm together with the rotational assignment, obtained using a pulsed field of 0.55 V/cm. The PE signals [/(e )] have not been normalized with the photoionization laser-pulse energy. Taken from ref. 61. Figure 36. N2P-PFI-PE spectrum for H2S in the region of 42,194-42,248 cm together with the rotational assignment, obtained using a pulsed field of 0.55 V/cm. The PE signals [/(e )] have not been normalized with the photoionization laser-pulse energy. Taken from ref. 61.
W.T. Silfvast, J.J. Macklin, O.R. Wood II High-gain inner-shell photoionization laser in Cd vapor pumped by soft X-ray radiation from a laser produced plasma source. Opt. Lett. 8, 551 (1983)... [Pg.368]

W.T. Silfvast, O.R. Wood II Photoionization lasers pumped by broadband soft-X-ray flux from laser-produced plasmas. J. Opt. Soc. Am. 4, 609 (1987)... [Pg.369]

Lykke K R and Kay B D 1990 State-to-state inelastic and reactive molecular beam scattering from surfaces Laser Photoionization and Desorption Surface Analysis Techniquesvo 1208, ed N S Nogar (Bellingham, WA SPIE) p 1218... [Pg.919]

Wight C A and Armentrout P B 1993 Laser photoionization probes of ligand-binding effects in multiphoton dissociation of gas-phase transition-metal complexes ACS Symposium Series 530 61-74... [Pg.1177]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

Hepburn J W 1995 Generation of coherent vacuum ultraviolet radiation applications to high-resolution photoionization and photoelectron spectroscopy Laser Techniques in Chemistry vol 23, ed A B Myers and T R Rizzo (New York Wley) pp 149-83... [Pg.2088]

In Surface Analysis by Laser Ionization (SALI), a probe beam such as an ion beam, electron beam, or laser is directed onto a surfiice to remove a sample of material. An untuned, high-intensity laser beam passes parallel and close to but above the sur-fiice. The laser has sufficient intensity to induce a high degree of nonresonant, and hence nonselective, photoionization of the vaporized sample of material within the laser beam. The nonselectively ionized sample is then subjected to mass spectral analysis to determine the nature of the unknown species. SALI spectra accurately reflect the surface composition, and the use of time-of-flight mass spectrometers provides fast, efficient and extremely sensitive analysis. [Pg.42]

SNMS sensitivity depends on the efficiency of the ionization process. SNs are post-ionized (to SN" ) either hy electron impact (El) with electrons from a hroad electron (e-)heam or a high-frequency (HF-) plasma (i.e. an e-gas), or, most efficiently, hy photons from a laser. In particular, the photoionization process enables adjustment of the fragmentation rate of sputtered molecules by varying the laser intensity, pulse width, and/or wavelength. [Pg.123]

A qualitatively different approach to probing multiple pathways is to interrogate the reaction intermediates directly, while they are following different pathways on the PES, using femtosecond time-resolved pump-probe spectroscopy [19]. In this case, the pump laser initiates the reaction, while the probe laser measures absorption, excites fluorescence, induces ionization, or creates some other observable that selectively probes each reaction pathway. For example, the ion states produced upon photoionization of a neutral species depend on the Franck-Condon overlap between the nuclear configuration of the neutral and the various ion states available. Photoelectron spectroscopy is a sensitive probe of the structural differences between neutrals and cations. If the structure and energetics of the ion states are well determined and sufficiently diverse in... [Pg.223]

Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy. Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy.
Figure 4. Fe cluster ionization thresholds as a function of cluster size, as determined by photoionization yield measurements using tunable UV/VUV laser radiation. Figure 4. Fe cluster ionization thresholds as a function of cluster size, as determined by photoionization yield measurements using tunable UV/VUV laser radiation.
Figure 13. Phase lag between the photoionization and photodissociation of vinyl chloride resulting from the Gouy phase of the focused laser beam. The dashed curve shows the results of the analytical model discussed in the text, and the solid curve is a numerical calculation of the phase lag without adjustable parameters. Figure 13. Phase lag between the photoionization and photodissociation of vinyl chloride resulting from the Gouy phase of the focused laser beam. The dashed curve shows the results of the analytical model discussed in the text, and the solid curve is a numerical calculation of the phase lag without adjustable parameters.
Reactions (19)-(21) represent the dissociation of benzene and reactions (22)-(26) represent the detection of fragments by VUV laser photoionization. The line-shape images resulted from these reactions. [Pg.189]

The general principle of detection of free radicals is based on the spectroscopy (absorption and emission) and mass spectrometry (ionization) or combination of both. An early review has summarized various techniques to detect small free radicals, particularly diatomic and triatomic species.68 Essentially, the spectroscopy of free radicals provides basic knowledge for the detection of radicals, and the spectroscopy of numerous free radicals has been well characterized (see recent reviews2-4). Two experimental techniques are most popular for spectroscopy studies and thus for detection of radicals laser-induced fluorescence (LIF) and resonance-enhanced multiphoton ionization (REMPI). In the photochemistry studies of free radicals, the intense, tunable and narrow-bandwidth lasers are essential for both the detection (via spectroscopy and photoionization) and the photodissociation of free radicals. [Pg.472]

The primary methods of analyzing for lead in environmental samples are AAS, GFAAS, ASV, ICP/AES, and XRFS (Lima et al. 1995). Less commonly employed techniques include ICP/MS, gas chromato-graphy/photoionization detector (GC/PID), IDMS, DPASV, electron probe X-ray microanalysis (EPXMA), and laser microprobe mass analysis (LAMMA). The use of ICP/MS will become more routine in the future because of the sensitivity and specificity of the technique. ICP/MS is generally 3 orders of magnitude more sensitive than ICP/AES (Al-Rashdan et al. 1991). Chromatography (GC,... [Pg.451]


See other pages where Photoionizing laser is mentioned: [Pg.134]    [Pg.112]    [Pg.118]    [Pg.395]    [Pg.395]    [Pg.299]    [Pg.422]    [Pg.47]    [Pg.134]    [Pg.112]    [Pg.118]    [Pg.395]    [Pg.395]    [Pg.299]    [Pg.422]    [Pg.47]    [Pg.1330]    [Pg.397]    [Pg.321]    [Pg.561]    [Pg.562]    [Pg.562]    [Pg.568]    [Pg.133]    [Pg.169]    [Pg.36]    [Pg.367]    [Pg.116]    [Pg.165]    [Pg.168]    [Pg.171]    [Pg.183]    [Pg.203]    [Pg.209]    [Pg.375]    [Pg.376]   
See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Laser photoionization

Laser photoionization

Laser photoionization separation of isotopes, isobars, and nuclear isomers

Laser resonance photoion

Mass spectrometry laser photoionization

Multistep laser photoionization

Photoion

Photoionization

Photoionization representative laser

Photoions

Pulsed Versus CW Lasers for Photoionization

Pulsed vs CW Lasers for Photoionization

© 2024 chempedia.info