Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphorous acid oxide

Parallel reactions, 58-64, 129 Partitioning ratios, 79 Perturbation (see Chemical relaxation) pH profiles, 139-145 bell-shaped, 141-142 Phosphorous acid, oxidation of, 186-187 Physical methods for kinetics, 22-25 end point reading unknown, 25-28 sample calculation for, first-order,... [Pg.279]

As(V) exists as H2ASO4 " in aqueous solution. Arsenic acid is a weak tribasic acid. Its dissociation constants, p a = 2.3, 6.8, and 11.5, are similar to those of phosphoric acid. Oxidation of As(lll) to As(V) in dissolved oxygen is slow at neutral pH, but is... [Pg.233]

More recently, alternative chemistries have been employed to coat oxide surfaces with SAMs. These have included carboxylic 1129, 1301, hydroxamic 11311, phosphonic 1124, 1321 and phosphoric acids 11331. Potential applications of SAMs on oxide surfaces range from protective coatings and adhesive layers to biosensors. [Pg.2623]

Phosphorus(III) oxide dissolves slowly in cold water to yield phosphoric(III) acid, H3PO3 (phosphorous acid) ... [Pg.235]

ALKANOLAMNES - ALKANOLAMDIESFROM OLEFIN OXIDES AND AA ONIA] (Vol 2) -phosphates for [PHOSPHORIC ACID AND PHOSPHATES] (Vol 18)... [Pg.705]

Detergents may be produced by the chemical reaction of fats and fatty acids with polar materials such as sulfuric or phosphoric acid or ethylene oxide. Detergents emulsify oil and grease because of their abiUty to reduce the surface tension and contact angle of water as well as the interfacial tension between water and oil. Recent trends in detergents have been to lower phosphate content to prevent eutrification of lakes when detergents are disposed of in municipal waste. [Pg.135]

Hexafluorophosphoric Acid. Hexafluorophosphoric acid (3) is present under ambient conditions only as an aqueous solution because the anhydrous acid dissociates rapidly to HF and PF at 25°C (56). The commercially available HPF is approximately 60% HPF based on PF analysis with HF, HPO2F2, HPO F, and H PO ia equiUbrium equivalent to about 11% additional HPF. The acid is a colorless Hquid which fumes considerably owiag to formation of an HF aerosol. Frequently, the commercially available acid has a dark honey color which is thought to be reduced phosphate species. This color can be removed by oxidation with a small amount of nitric acid. When the hexafluorophosphoric acid is diluted, it slowly hydrolyzes to the other fluorophosphoric acids and finally phosphoric acid. In concentrated solutions, the hexafluorophosphoric acid estabUshes equiUbrium with its hydrolysis products ia relatively low concentration. Hexafluorophosphoric acid hexahydrate [40209-76-5] 6 P 31.5°C, also forms (66). This... [Pg.226]

AFC = all line fuel ceU MCFC = molten carbonate fuel ceU PAFC = phosphoric acid fuel ceU PEFC = polymer electrolyte fuel ceU and SOFC = solid oxide fuel ceU. [Pg.577]

Hydrogen use as a fuel in fuel cell appHcations is expected to increase. Fuel cells (qv) are devices which convert the chemical energy of a fuel and oxidant directiy into d-c electrical energy on a continuous basis, potentially approaching 100% efficiency. Large-scale (11 MW) phosphoric acid fuel cells have been commercially available since 1985 (276). Molten carbonate fuel cells (MCFCs) ate expected to be commercially available in the mid-1990s (277). [Pg.432]

Inorganic Methods. Before the development of electrolytic processes, hydrogen peroxide was manufactured solely from metal peroxides. Eady methods based on barium peroxide, obtained by air-roasting barium oxide, used dilute sulfuric or phosphoric acid to form hydrogen peroxide in 3—8% concentration and the corresponding insoluble barium salt. Mote recent patents propose acidification with carbon dioxide and calcination of the by-product barium carbonate to the oxide for recycle. [Pg.478]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

Ma.nufa.cture. Mesityl oxide is produced by the Hquid-phase dehydration of diacetone alcohol ia the presence of acidic catalysts at 100—120°C and atmospheric pressure. As a precursor to MIBK, mesityl oxide is prepared ia this manner ia a distillation column ia which acetone is removed overhead and water-saturated mesityl oxide is produced from a side-draw. Suitable catalysts are phosphoric acid (177,178) and sulfuric acid (179,180). The kinetics of the reaction over phosphoric acid have been reported (181). [Pg.494]

The catalyst used in the production of maleic anhydride from butane is vanadium—phosphoms—oxide (VPO). Several routes may be used to prepare the catalyst (123), but the route favored by industry involves the reaction of vanadium(V) oxide [1314-62-1] and phosphoric acid [7664-38-2] to form vanadyl hydrogen phosphate, VOHPO O.5H2O. This material is then heated to eliminate water from the stmcture and irreversibly form vanadyl pyrophosphate, (V(123,124). Vanadyl pyrophosphate is befleved to be the catalyticaHy active phase required for the conversion of butane to maleic anhydride (125,126). [Pg.454]

The bath components for a nitrite—nitrate accelerated bath basic to this conversion coating process are (/) 2inc metal or 2inc oxide dissolved in acid (2) phosphate ions added as phosphoric acid (J) addition of an oxidant such as sodium nitrite and (4) addition of nitric acid. Other oxidants such as peroxide, chlorate, chlorate in combination with nitrate, or an organic nitro compound may also be used. [Pg.223]

Phosphorus. Eighty-five percent of the phosphoms, the second most abundant element in the human body, is located in bones and teeth (24,35). Whereas there is constant exchange of calcium and phosphoms between bones and blood, there is very Httle turnover in teeth (25). The Ca P ratio in bones is constant at about 2 1. Every tissue and cell contains phosphoms, generally as a salt or ester of mono-, di-, or tribasic phosphoric acid, as phosphoHpids, or as phosphorylated sugars (24). Phosphoms is involved in a large number and wide variety of metaboHc functions. Examples are carbohydrate metaboHsm (36,37), adenosine triphosphate (ATP) from fatty acid metaboHsm (38), and oxidative phosphorylation (36,39). Common food sources rich in phosphoms are Hsted in Table 5 (see also Phosphorus compounds). [Pg.377]

The acid process has three advantages over the alkaline process, ie, (/) higher yield of phosphine (60 vs 25%) (2) more pure gas for use in subsequent reactions (95 vs 40%) and (J) by-product phosphoric acid is relatively valuable and can be sold into a number of markets, eg, in the manufacture of fertilizers and flame retardants. There is no ready outlet for the mixture of phosphites produced via the alkaline route and additional processing by oxidative spray drying is needed to produce phosphates for sale (3). [Pg.317]

Phosphoric acids and the phosphates maybe defined as derivatives of phosphoms oxides where the phosphoms atom is in the +5 oxidation state. These are compounds formed in the M2O—P20 system, where M represents one cation equivalent, eg, H", Na", 0.5 Ca ", etc. The molecular formula of the phosphoms(V) oxide [1314-56-3] is actually P O q, but this oxide is commonly referred to in terms of its empirical formula, P2O5. StmcturaHy, four phosphoms—oxygen (P—O) linkages are arranged in an approximate tetrahedral configuration about the phosphoms atom in the phosphate anion. Compounds containing discrete, monomeric PO ions are known as orthophosphates or simply as phosphates. [Pg.323]

Traditionally, phosphates have been represented as stoichiometric combinations of oxides. It is common practice to speak of the phosphates in terms of oxide ratios for example, phosphoric acid [7664-38-2] H PO, as 1.5 H2O 0.5P2O disodium phosphate [7558-79-4] Na2HP04, as Na20 O.5H2O 0.5P20 and sodium triphosphate [7601-54-9], Na P O, as 2.5 Na20 1.5P20. ... [Pg.323]

Phosphoric acid, aside from its acidic behavior, is relatively unreactive at room temperature. It is sometimes substituted for sulfuric acid because of its lack of oxidising properties (see SuLFURic ACID AND SULFURTRIOXIDe). The reduction of phosphoric acid by strong reducing agents, eg, H2 or C, does not occur to any measurable degree below 350—400°C. At higher temperatures, the acid reacts with most metals and their oxides. Phosphoric acid is stronger than acetic, oxaUc, siUcic, and boric acids, but weaker than sulfuric, nitric, hydrochloric, and chromic acids. [Pg.324]

Metal Treatment. After rolling, the oxide scale on sheet steel is removed by acid treatment (pickling) (see Metal surface treatments). Phosphoric acid, a good pickling agent, leaves the steel coated with a thin film of iron phosphates. This process improves mst resistance but presents a problem if the steel is to be electroplated. [Pg.330]

Alkali Meta.IPhospha.tes, A significant proportion of the phosphoric acid consumed in the manufacture of industrial, food, and pharmaceutical phosphates in the United States is used for the production of sodium salts. Alkali metal orthophosphates generally exhibit congment solubility and are therefore usually manufactured by either crystallisation from solution or drying of the entire reaction mass. Alkaline-earth and other phosphate salts of polyvalent cations typically exhibit incongment solubility and are prepared either by precipitation from solution having a metal oxide/P20 ratio considerably lower than that of the product, or by drying a solution or slurry with the proper metal oxide/P20 ratio. [Pg.341]


See other pages where Phosphorous acid oxide is mentioned: [Pg.272]    [Pg.509]    [Pg.272]    [Pg.509]    [Pg.168]    [Pg.307]    [Pg.308]    [Pg.309]    [Pg.213]    [Pg.650]    [Pg.67]    [Pg.150]    [Pg.224]    [Pg.242]    [Pg.475]    [Pg.577]    [Pg.176]    [Pg.288]    [Pg.277]    [Pg.380]    [Pg.140]    [Pg.227]    [Pg.222]    [Pg.320]    [Pg.327]    [Pg.328]    [Pg.348]   
See also in sourсe #XX -- [ Pg.891 ]




SEARCH



Attack of Phosphoric Acid on Oxides

Oxidation of Phosphorous Acid by Peroxodisulfate Ions

Oxidation of hypophosphorous and phosphorous acids

Oxidative degradation phosphoric acid

Phosphor -oxid

Phosphoric Oxide

Phosphoric acid oxidative cleavage

Phosphorous oxide

Phosphorous oxide, reactions, trifluoromethanesulfonic acid

Phosphorus Oxide-Phosphoric Acid

Reactions between oxides and phosphoric acid solutions

© 2024 chempedia.info