Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphatidylcholine, positional

Diacylglycerol is glycerol esterified to two fatty acids at the sn-1 and sn-2 positions. It is a membrane-embedded product of phospholipase C action and an activator of protein kinase C. It is also an intermediate in the biosynthesis of triacylglycerol, phosphatidyletha-nolamine and phosphatidylcholine. [Pg.426]

Phosphatidylcholine, commonly known as lecithin, is the most commonly occurring in natnre and consists of two fatty add moieties in each molecule. Phosphati-dylethanolamine, also known as cephahn, consists of an amine gronp that can be methylated to form other compounds. This is also one of the abundant phospholipids of animal, plant, and microbial origin. Phosphatidylserine, which has weakly acidic properties and is found in the brain tissues of mammals, is found in small amounts in microorganisms. Recent health claims indicate that phosphatidylserine can be used as a brain food for early Alzheimer s disease patients and for patients with cognitive dysfunctions. Lysophospholipids consist of only one fatty acid moiety attached either to sn-1 or sn-2 position in each molecule, and some of them are quite soluble in water. Lysophosphatidylchohne, lysophosphatidylserine, and lysophos-phatidylethanolamine are found in animal tissues in trace amounts, and they are mainly hydrolytic products of phospholipids. [Pg.303]

Therefore, it is currently believed that anandamide is formed from membrane phospholipids (Fig. 4) through a pathway that involves (1) a trans-acylation of the amino group of phosphatidylethanolamine with arachidonate from the sn-1 position of phosphatidylcholine and (2) a D-type phosphodiesterase activity on the resulting A-arachidonylphosphati-dylethanolamide (NAPE). Synthesis of anandamide is presumably regulated at the levels of both enzymes, the A-acyltranferase and the phospholipase D, by stimuli that raise intracellular calcium or by receptors linked with cAMP and PKA. It has been shown that anandamide is formed when neurons are depolarized and, therefore, the intracellular calcium ion levels are elevated (Cadas, 1996). [Pg.106]

The role of protein kinase C in many neutrophil functions is undisputed and has been recognised for some time. For many years it was believed that the source of DAG, the activator of protein kinase C, was derived from the activity of PLC on membrane phosphatidylinositol lipids. Whilst this enzyme undoubtedly does generate some DAG (which may then activate protein kinase C), there are many reasons to indicate that this enzyme activity is insufficient to account for all the DAG generated by activated neutrophils. More recently, experimental evidence has been provided to show that a third phospholipase (PLD) is involved in neutrophil activation, and that this enzyme is probably responsible for the majority of DAG that is formed during cell stimulation. The most important substrate for PLD is phosphatidylcholine, the major phospholipid found in neutrophil plasma membranes, which accounts for over 40% of the phospholipid pool. The sn-1 position of phosphatidylcholine is either acyl linked or alkyl linked, whereas the sn-2 position is invariably acyl linked. In neutrophils, alkyl-phosphatidylcholine (1-0-alky 1-PC) represents about 40% of the phosphatidylcholine pool (and is also the substrate utilised for PAF formation), whereas the remainder is diacyl-phosphatidylcholine. Both of these types of phosphatidylcholine are substrates for PLD and PLA2. [Pg.223]

Lipid-protein interactions are of major importance in the structural and dynamic properties of biological membranes. Fluorescent probes can provide much information on these interactions. For example, van Paridon et al.a) used a synthetic derivative of phosphatidylinositol (PI) with a ris-parinaric acid (see formula in Figure 8.4) covalently linked on the sn-2 position for probing phospholipid vesicles and biological membranes. The emission anisotropy decays of this 2-parinaroyl-phosphatidylinositol (PPI) probe incorporated into vesicles consisting of phosphatidylcholine (PC) (with a fraction of 5 mol % of PI) and into acetylcholine receptor rich membranes from Torpedo marmorata are shown in Figure B8.3.1. [Pg.243]

Figure 11.24 A summary of the reactions involved in synthesis of sphingomyelin. Reaction between serine and palmitoyl-CoA produces 3-oxosphinganine, which is converted to sphingamine. Attachment of a Long-chain fatty acid to the amino group of sphinganine produces dihydroxyceramide. Ceramide reacts with phosphatidylcholine the phosphocholine component forms an ester bond with the hydroxyl group at position one of ceramide. Figure 11.24 A summary of the reactions involved in synthesis of sphingomyelin. Reaction between serine and palmitoyl-CoA produces 3-oxosphinganine, which is converted to sphingamine. Attachment of a Long-chain fatty acid to the amino group of sphinganine produces dihydroxyceramide. Ceramide reacts with phosphatidylcholine the phosphocholine component forms an ester bond with the hydroxyl group at position one of ceramide.
LCAT catalyzes the transfer of a preferentially unesterified fatty acid from the sn-2 position of phosphatidylcholine to the 3/i-hydroxy group of cholesterol, and thereby produces lysophosphatidylcholine and a cholesteryl ester [50]. Depending on the mutation in the LCAT gene, homozygous or compound heterozygous patients present with one of two clinical phenotypes, classical LCAT deficiency or fish-eye disease [58, 85]. Classical LCAT deficiency is caused by a broad spectrum of missense and non-sense mutations that interfere with the synthesis or secretion or affect the catalytic activity of LCAT [10]. Fish-eye disease is caused by a limited number of missense point mutations that alter the surface polarity, and thereby interfere with the binding of the enzyme to apoA-I containing lipoproteins [77]). [Pg.535]

T6. The Action of Phospholipases The venom of the Eastern diamondback rattler and the Indian cobra contains phospholipase A2, which catalyzes the hydrolysis of fatty acids at the C-2 position of glycerophospholipids. The phospholipid breakdown product of this reaction is lysolecithin (lecithin is phosphatidylcholine). At high concentrations, this and other lysophospholipids act as detergents, dissolving the membranes of erythrocytes and lysing the cells. Extensive hemolysis may be life-threatening. [Pg.368]

Hay and Morrison (1971) later presented additional data on the fatty acid composition and structure of milk phosphatidylethanolamine and -choline. Additionally, phytanic acid was found only in the 1-position of the two phospholipids. The steric hindrance presented by the four methyl branches apparently prevents acylation at the 2-position. The fairly even distribution of monoenoic acids between the two positions is altered when the trans isomers are considered, as a marked asymmetry appears with 18 1 between the 1- and 2-positions of phosphatidylethanolamine, but not of phosphatidylcholine. Biologically, the trans isomers are apparently handled the same as the equivalent saturates because the latter have almost the same distribution. There are no appreciable differences in distribution of cis or trans positional isomers between positions 1 and 2 in either phospholipid. Another structural asymmetry observed is where cis, cis nonconjugated 18 2s are located mostly in the 2-position in both phospholipids. It appears that one or more trans double bonds in the 18 2s hinders the acylation of these acids to the 2-position. [Pg.200]

Ether phospholipids, analogous to the ether lipids described in Section 2, are also widely distributed. Tire alkenyl ether analogs of phosphatidylcholine (Fig. 8-2) are called plasmalogens.17 In neutrophils the 1-O-alkyl ethers contain the major share of the cell s arachidonic acid, which is esterified in the 2 position.1819... [Pg.384]

In phosphatidylcholine, in which the nitrogen is surrounded by methyl groups and cannot form this kind of chain, water molecules bridge between the phosphates but the positive charges still interact with the adjacent negative charges. [Pg.396]

Polyunsaturated fatty acids, containing 4,5, or 6 double bonds and chain lengths of up to C36 are found in phosphatidylcholine of vertebrate retinas.121 Although the double bonds are rarely in conjugated positions in food fats and in animal bodies, some plants convert oleic or linoleic acid into fatty acids with as many as three or four conjugated double bonds.1213 Conjugated linoleic acid (9c, lit 18 2) can... [Pg.1193]


See other pages where Phosphatidylcholine, positional is mentioned: [Pg.149]    [Pg.149]    [Pg.1078]    [Pg.97]    [Pg.468]    [Pg.1078]    [Pg.247]    [Pg.967]    [Pg.146]    [Pg.438]    [Pg.547]    [Pg.342]    [Pg.407]    [Pg.56]    [Pg.920]    [Pg.134]    [Pg.185]    [Pg.64]    [Pg.99]    [Pg.143]    [Pg.247]    [Pg.261]    [Pg.244]    [Pg.185]    [Pg.242]    [Pg.26]    [Pg.148]    [Pg.210]    [Pg.50]    [Pg.172]    [Pg.172]    [Pg.186]    [Pg.16]    [Pg.33]    [Pg.349]    [Pg.800]    [Pg.202]    [Pg.383]    [Pg.401]   


SEARCH



Phosphatidylcholin

Phosphatidylcholine

Phosphatidylcholine, positional Phosphatidylglycerol

Phosphatidylcholine, positional biosynthesis

Phosphatidylcholine, positional glycerolipids

Phosphatidylcholines

© 2024 chempedia.info