Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosgene isocyanates

For example, the following non-phosgene isocyanate synthesis leading ultimately to the production of polyurethanes used in solvent-based adhesive systems can be represented as follows ... [Pg.139]

A contact insecticide with the trade name Sevin . White solid, m.p. 142 C. It is prepared by reaction of I-naphthol with methyl isocyanate or with phosgene and a base. [Pg.270]

Urea derivadves are of general interest in medicinal chemistry. They may be obtained cither from urea itself (barbiturates, sec p. 306) or from amines and isocyanates. The latter are usually prepared from amines and phosgene under evolution of hydrogen chloride. Alkyl isocyanates are highly reactive in nucleophilic addidon reactions. Even amides, e.g. sulfonamides, are nucleophilic enough to produce urea derivatives. [Pg.301]

Reductive carbonylation of nitro compounds is catalyzed by various Pd catalysts. Phenyl isocyanate (93) is produced by the PdCl2-catalyzed reductive carbonylation (deoxygenation) of nitrobenzene with CO, probably via nitrene formation. Extensive studies have been carried out to develop the phosgene-free commercial process for phenyl isocyanate production from nitroben-zene[76]. Effects of various additives such as phenanthroline have been stu-died[77-79]. The co-catalysts of montmorillonite-bipyridylpalladium acetate and Ru3(CO) 2 are used for the reductive carbonylation oLnitroarenes[80,81]. Extensive studies on the reaction in alcohol to form the A -phenylurethane 94 have also been carried out[82-87]. Reaction of nitrobenzene with CO in the presence of aniline affords diphenylurea (95)[88]. [Pg.538]

Rea.ctlons, As with other tertiary alcohols, esterification with carboxyUc acids is difficult and esters are prepared with anhydrides (181), acid chlorides (182), or ketene (183). Carbamic esters may be prepared by treatment with an isocyanate (184) or with phosgene followed by ammonia or an amine (185). [Pg.112]

Methylenebis(4-phenyl isocyanate). This compound is also known as methyl diisocyanate [101-68-8] (MDI) and is produced by the condensation of aniline and formaldehyde with subsequent phosgenation. Its principal end use is rigid urethane foams other end uses include elastic fibers and elastomers. Total formaldehyde use is 5% of production (115). [Pg.497]

The first synthetic route for isocyanates was reported in 1848 (10,11)- Subsequent efforts by Hofmann, Curtius, and Hentschel pioneered alternative synthetic approaches (12). These efforts highlighted the phosgene—amine approach. Staudinger presented the stmctural similarities between isocyanates and ketenes and stimulated interest in this class of compounds (13). However, it was not until 1945, when the world was pressed for an alternative to natural mbber, that synthetic routes to isocyanates became an area of great importance. Several excellent review articles covering the synthesis and chemistry of isocyanates have been presented (1 9). [Pg.447]

Preparation from Amines. The most common method of preparing isocyanates, even on a commercial scale, involves the reaction of phosgene [75-44-5] and aromatic or aUphatic amine precursors. The initial reaction step, the formation of N-substituted carbamoyl chloride (1), is highly exothermic and is succeeded by hydrogen chloride elimination which takes place at elevated temperatures. [Pg.447]

Oligomers of phosgene, such as diphosgene [503-38-8] (COCl2)2, have found use in the laboratory preparation of isocyanates. Carbamoyl chlorides, A[,A/-disubstituted ureas, dimethyl- and diphenylcarbonates, and arylsulfonyl isocyanates have also been used to convert amines into urea intermediates, which are subsequendy pyroly2ed to yield isocyanates. These methods have found appHcations for preparation of low boiling point aUphatic isocyanates (2,9,17). [Pg.448]

More convenient is the use of aryl a2ides which are readily converted into isocyanates upon heating in nonreactive solvents via the loss of nitrogen. The latter method is useful for the synthesis of isocyanates with additional substituents which could not be prepared with phosgene (20). [Pg.448]

Reportedly, simple alkyl isocyanates do not dimerize upon standing. They trimerize to isocyanurates under comparable reaction conditions (57). Aliphatic isocyanate dimers can, however, be synthesized via the phosgenation of A[,A[-disubstituted ureas to yield /V-(ch1orocarhony1)ch1oroformamidine iatermediates which are subsequendy converted by partial hydrolysis and base catalyzed cycUzation. This is also the method of choice for the synthesis of l-alkyl-3-aryl-l,3-diazetidiones (mixed dimers of aromatic and aUphatic isocyanates) (58). [Pg.451]

Aromatic Isocyanates. A variety of methods are described in the Hterature for the synthesis of aromatic isocyanates. Only the phosgenation of amines or amine salts is used on a commercial scale (5). Much process refinement has occurred to minimise the formation of disubstituted ureas arising by the reaction of the generated isocyanate with the amine starting material. A listing of the key commercially available isocyanates is presented in Table 1. [Pg.452]

For methylene diphenyl diisocyanate (MDI), the initial reaction involves the condensation of aniline [62-53-3] (21) with formaldehyde [50-00-0] to yield a mixture of oligomeric amines (22, where n = 1, 2, 3...). For toluene diisocyanate, amine monomers are prepared by the nitration (qv) of toluene [108-88-3] and subsequent hydrogenation (see Amines byreduction). These materials are converted to the isocyanate, in the majority of the commercial aromatic isocyanate phosgenation processes, using a two-step approach. [Pg.452]

An excess of phosgene is used during the initial reaction of amine and phosgene to retard the formation of substituted ureas. Ureas are undesirable because they serve as a source for secondary product formation which adversely affects isocyanate stabiUty and performance. By-products, such as biurets (23) and triurets (24), are formed via the reaction of the labile hydrogens of the urea with excess isocyanate. Isocyanurates (25, R = phenyl, toluyl) may subsequendy be formed from the urea oligomers via ring closure. [Pg.453]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Low boiling isocyanates, such as methyl isocyanate [624-83-9] are difficult to prepare via conventional phosgenation due to the fact that the A/-alkyl carbamoyl chlorides are volatile below their decomposition poiat. Interestingly, A/-ethyl carbamoyl chloride decomposes at its boiling poiat whereas the A/-propyl carbamoyl chloride is thermoly2ed cleanly into isocyanate and hydrogen chloride. [Pg.455]

Monsanto has disclosed the use of carbon dioxide—amine complexes which are dehydrated, at low temperatures, with phosphoryl chloride [10025-87-3] or thionyl chloride [7719-09-7] as a viable route to a variety of aUphatic isocyanates. The process rehes on the facile formation of the intermediate salt (30).REPLACEVariations of this process, in which phosgene is used as a dehydrating agent, have been reported earlier (84). Table 2 Hsts commercially available aUphatic isocyanates. [Pg.456]

Specialty Isocyanates. Acyl isocyanates, extensively used in synthetic appHcations, caimot be direcdy synthesized from amides and phosgene. Reactions of acid haUdes with cyanates have been suggested. However, the dominant commercial process utilizes the reaction of carboxamides with oxalyl chloride [79-37-8]. CycHc intermediates have been observed in these reactions which generally give a high yield of the desired products (86). [Pg.456]

Commercially important arenesulfonyl isocyanates are not directly accessible from the corresponding sulfonamides via phosgenation due to lack of reactivity or by-product formation at elevated temperatures. A convenient method for their preparation consists of the reaction of alkyl isocyanates with sulfonamides to produce mixed ureas which, upon phosgenation, yield a mixture of alkyl and arenesulfonyl isocyanates. The desired product can be obtained by simple distillation (16). Optionally, the oxalyl chloride route has been employed for the synthesis of arenesulfonyl isocyanate (87). [Pg.456]

Naphthol is mainly used in the manufacture of the insecticide carbaryl (59), l-naphthyl A/-methyicarbamate/ iJ-2j5 - (Sevin) (22), which is produced by the reaction of 1-naphthol with methyl isocyanate. Methyl isocyanate is usually prepared by treating methylamine with phosgene. Methyl isocyanate is a very toxic Hquid, boiling at 38°C, and should not be stored for long periods of time (Bhopal accident, India). India has developed a process for the preparation of aryl esters of A/-alkyl carbamic acids. Thus l-naphthyl methylcarbamate is prepared by refluxing 1-naphthol with ethyl methylcarbamate and POCl in toluene (60). In 1992, carbaryl production totaled > 11.4 x 10 t(35). Rhc ne-Poulenc, at its Institute, W. Va., facihty is the only carbaryl producer in United States. [Pg.497]

Phosgene reacts with a multitude of nitrogen, oxygen, sulfur, and carbon centers. Reaction with primary alkyl and aryl amines yield carbamoyl chlorides which are readily dehydrohalogenated to isocyanates. Secondary amines also form carbamoyl chlorides. [Pg.312]

Primary cycloaUphatic amines react with phosgene to form isocyanates. Reaction of isocyanates with primary and secondary amines forms ureas. Dehydration of ureas or dehydrosulfuri2ation of thioureas results in carhodiimides. The nucleophilicity that deterrnines rapid amine reactivity with acid chlorides and isocyanates also promotes epoxide ring opening to form hydroxyalkyl- and dihydroxyalkylaniines. Michael addition to acrylonitrile yields stable cyanoethylcycloalkylarnines. [Pg.208]

The polyamide copolymer of dodecanoic acid with methylenedi(cyclohexylamine) (MDCHA, PACM) was sold as continuous filament yam fiber under the tradename QIANA. As late as 1981, over 145,000 t was produced using high percentages, typically 80%, of trans, trans MDCHA isomer. The low melting raffinate coproduct left after t,t isomer separation by fractional crystallisation was phosgenated to produce a Hquid aUphatic diisocyanate marketed by Du Pont as Hylene W. Upon terrnination of their QIANA commitment, Du Pont sold the urethane intermediate product rights to Mobay, who now markets the 20% trans, trans—50% cis, trans—30% cis, cis diisocyanate isomer mixture as Desmodur W. In addition to its use in polyamides and as an isocyanate precursor, methylenedi (cyclohexyl amine) is used directiy as an epoxy curative. The Hquid diamine mixture identified historically as PACM-20 is marketed as AMICURE PACM by Anchor Chemical for performance epoxies. [Pg.213]

V-Phenylsuccinimide [83-25-0] (succanil) is obtained in essentially quantitative yield by heating equivalent amounts of succinic acid and aniline at 140—150°C (25). The reaction of a primary aromatic amine with phosgene leads to formation of an arylcarbamoyl chloride, that when heated loses hydrogen chloride to form an isocyanate. Commercially important isocyanates are obtained from aromatic primary diamines. [Pg.229]

The most important commercial process is the reaction of MDA with an excess of phosgene to form the corresponding isocyanate, 4,4 -methylene-diphenyldiisocyanate, MDI, C H qN202- The reaction proceeds through the formation of a primary carbamyl chloride that is decomposed with heating and the removal of HQ. [Pg.248]

Commercially, the PMDA mixtures are normally treated with phosgene to produce the corresponding isocyanates. These isocyanate mixtures, commonly called polymeric MDI (PMDI), are sold direcdy and have varied chemical compositions. The 4,4 -MDI can be separated from the PMDI products by distillation or crystallisation (31,32). The amount of 4,4 -MDI that is removed depends on marketing conditions. The residues are also viable commercial products. [Pg.250]

Reaction with Phosgene. This reaction of amino acid esters is used for preparing the corresponding isocyanates, especially lysine diisocyanate [4460-02-0] (LDI). LDI is a valuable nonyellowing isocyanate with a functional side group for incorporation in polyurethanes. [Pg.280]

Isocyanate. Lysine has two amino groups in the molecule and dHsocyanate is prepared by reaction with phosgene. Lysine trHsocyanate [69878-18-8] (LTI) is developing on a commercial scale in Japan (244). [Pg.297]


See other pages where Phosgene isocyanates is mentioned: [Pg.326]    [Pg.220]    [Pg.189]    [Pg.7]    [Pg.268]    [Pg.90]    [Pg.326]    [Pg.220]    [Pg.189]    [Pg.7]    [Pg.268]    [Pg.90]    [Pg.79]    [Pg.224]    [Pg.447]    [Pg.447]    [Pg.448]    [Pg.448]    [Pg.452]    [Pg.453]    [Pg.454]    [Pg.454]    [Pg.455]    [Pg.103]    [Pg.126]    [Pg.311]    [Pg.247]    [Pg.249]    [Pg.259]   
See also in sourсe #XX -- [ Pg.170 ]

See also in sourсe #XX -- [ Pg.138 , Pg.158 ]

See also in sourсe #XX -- [ Pg.138 , Pg.158 ]

See also in sourсe #XX -- [ Pg.17 , Pg.403 ]

See also in sourсe #XX -- [ Pg.17 , Pg.403 ]




SEARCH



Phosgene-free isocyanates

Potassium isocyanate phosgene

© 2024 chempedia.info