Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenylalanine ammonia lyase cinnamic acid

Cell wall preparations of Colletrichum lindemuthianum Phaseolus vulgaris phenylalanine ammonia lyase cinnamic acid 4-hydrolase chalcone synthase chalcone isomerase (40)... [Pg.79]

Ammonia lyases Cinnamic acid derivatives Phenylalanine derivatives 44... [Pg.2125]

Cinnamic acid derivatives Phenylalanine ammonia-lyase, cinnamate 2- and 4-monooxygenases (D 22.2.1, D 22.2.2) Phenol oxidase, 0-methyltransferases, cinnamic acid derivatives (D 22.2.1) M Un- known Inner membranes... [Pg.42]

One of the most interesting uses for cinnamic acid in recent years has been as a raw material in the preparation of L-phenylalanine [63-91-2] the key intermediate for the synthetic dipeptide sweetener aspartame (25). Genex has described a biosynthetic route to L-phenylalanine which involves treatment of immobilized ceUs of R rubra containing the enzyme phenylalanine ammonia lyase (PAT,) with ammonium cinnamate [25459-05-6] (26). [Pg.174]

Phenylalanine ammonia-lyase (PAL EC 4.3.1.5) is a pivotal enzyme in controlling flow of carbon from aromatic amino acids to secondary aromatic compounds (Figure 1) (28). PAL primarily deaminates phenylalanine to form t-cinnamic acid, however, in many species, it also less efficiently deaminates tyrosine to form -coumaric acid. Because PAL is restricted to plants and is an important enzyme in plant development, Jangaard (29) suggested that PAL inhibitors might make safe and effective herbicides, however, in his screen of several herbicides, he found no compound to have a specific effect on PAL. This was also the case in studies by Hoagland and Duke (30, 31.) in which 16 herbicides were screened. [Pg.117]

The key reaction that links primary and secondary metabolism is provided by the enzyme phenylalanine ammonia lyase (PAL) which catalyzes the deamination of l-phenylalanine to form iran.v-cinnamic acid with the release of NH3 (see Fig. 3.3). Tyrosine is similarly deaminated by tyrosine ammonia lyase (TAL) to produce 4-hydroxycinnamic acid and NH3. The released NH3 is probably fixed by the glutamine synthetase reaction. These deaminations initiate the main phenylpropanoid pathway. [Pg.93]

A specialized amino acid residue that serves as an essesn-tial electrophilic center in several enzymatic reactions, including those catalyzed by L-phenylalanine ammonia lyase (Reaction L-phenylalanine tranx-cinnamate + NH3) and L-histidine ammonia lyase (Reaction L-histi-dine urocanate + NH3). The former facilitates the elimination of ammonia and the pro-S hydrogen of phe-nylanine, and the initial step is nucleophilic attack of... [Pg.187]

Phenylalanine Ammonia-Lyase. The building units of lignin are formed from carbohydrate via the shikimic acid pathway to give aromatic amino acids. Once the aromatic amino acids are formed, a key enzyme for the control of lignin precursor synthesis is phenylalanine ammonia-lyase (PAL) (1). This enzyme catalyzes the production of cinnamic acid from phenylalanine. It is very active in those tissues of the plant that become lignified and it is also a central enzyme for the production of other phenylpropanoid-derived compounds such as flavonoids and coumarins, which can occur in many parts of the plant and in many different organs (35). Radioactive phenylalanine and cinnamic acid are directly incorporated into lignin in vascular tissue (36). [Pg.10]

Until recently (43), only E-monolignols were considered to be involved in the process of lignification. This concept of exclusivity presumably arose from the following observations stereospecific deamination of phenylalanine, by phenylalanine ammonia lyase (PAL), affords E-cinnamic acid... [Pg.74]

The chemical and physical evidence for the presence of lignin in the material deposited at wound margins is supported by biochemical studies on the enzymes involved in phenylpropanoid metabolism. Thus, the extractable activities of phenylalanine ammonia-lyase, tyrosine ammonia-lyase, cinnamate-4-hydroxylase, caffeic acid O-methyltransferase,... [Pg.362]

A different approach to investigate active lignification during resistance reactions is provided by the determination of enzyme activities involved in lignin biosynthesis. Resistant plants are expected to be more strongly activated during or immediately preceding the resistance reaction compared to susceptible plants. Thus, phenylalanine ammonia-lyase (PAL) (43-45), cinnamic acid 4-hydroxylase (46), O-methyltransferases (44), and... [Pg.372]

DC194 Noe, W., and H. U. Seitz. Studies on the regulatory role of trans-cinnamic acid on the activity of the phenylalanine ammonia-lyase(pal)in suspens- DC206 ion cultures of Daucus carota L. Z Naturforsch Ser C 1983 38(5/6) ... [Pg.219]

Coumaroyl-CoA is produced from the amino acid phenylalanine by what has been termed the general phenylpropanoid pathway, through three enzymatic conversions catalyzed by phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate CoA ligase (4CL). Malonyl-CoA is formed from acetyl-CoA by acetyl-CoA carboxylase (ACC) (Figure 3.2). Acetyl-CoA may be produced in mitochondria, plastids, peroxisomes, and the cytosol by a variety of routes. It is the cytosolic acetyl-CoA that is used for flavonoid biosynthesis, and it is produced by the multiple subunit enzyme ATP-citrate lyase that converts citrate, ATP, and Co-A to acetyl-CoA, oxaloacetate, ADP, and inorganic phosphate. ... [Pg.151]

L-phenylalanine trans-cinnamic acid phenylalanine ammonia lyase... [Pg.108]

For the biosynthesis of vanillin, several other enzymes are of interest. First of all, phenylalanine ammonia lyase (PAL) this enzyme converts phenylalanine into the cinnamic acid type of compounds, the first intermediates in the vanillin biosynthesis after the primary metabolism. PAL activity could be detected in green beans, but after scalding this activity is lost. The chain shortening enzyme (CSE), responsible for the conversion of a C Cs compound into a C6Ci compound, was found to be localised in the cytosol of cells of the placental tri-chomes in the green beans [23]. [Pg.209]

Catabolism of histidine in most organisms proceeds via an initial elimination of NH3 to form urocanic acid (Eq. 14-44). The absence of the enzyme L-histidine ammonia-lyase (histidase) causes the genetic disease histidinemia 284/285 A similar reaction is catalyzed by the important plant enzyme L-phenylalanine ammonia-lyase. It eliminates -NH3+ along with the pro-S hydrogen in the (3 position of phenylalanine to form frans-cinnamate (Eq. 14-45). Tyrosine is converted to p-coumarate by the same enzyme. Cinnamate and coumarate are formed in higher plants and are converted into a vast array of derivatives (Box 21-E,... [Pg.755]

Some of the pathways of animal and bacterial metabolism of aromatic amino acids also are used in plants. However, quantitatively more important are the reactions of the phenylpropanoid pathway,173-1743 which is initiated by phenylalanine ammonia-lyase (Eq. 14-45).175 As is shown at the top of Fig. 25-8, the initial product from phenylalanine is trails-cinnam-ate. After hydroxylation to 4-hydroxycinnamate (p-coumarate) and conversion to a coenzyme A ester,1753 the resulting p-coumaryl-CoA is converted into mono-, di-, and trihydroxy derivatives including anthocyanins (Box 21-E) and other flavonoid compounds.176 The dihydroxy and trihydroxy methylated products are the starting materials for formation of lignins and for a large series of other plant products, many of which impart characteristic fragrances. Some of these are illustrated in Fig. 25-8. [Pg.1438]

The general phenylpropanoid pathway begins with the deamination of L-phenylalanine to cinnamic acid catalyzed by phenylalanine ammonia lyase (PAL), Fig. (1), the branch-point enzyme between primary (shikimate pathway) and secondary (phenylpropanoid) metabolism [5-7]. Due to the position of PAL at the entry point of phenylpropanoid metabolism, this enzyme has the potential to play a regulatory role in phenolic-compound production. The importance of this is illustrated by the high degree of regulation both during development as well as in response to environmental stimuli. [Pg.652]

Figure 3-4. The general phenylpropanoid pathway. The enzymes involved in this pathway are (a) phenylalanine ammonia lyase (PAL E.C. 4.3.1.5), (b) cinnamic acid 4-hydroxylase (C4H E.C. 1.14.13.11), and (J) 4-coumaric acid CoA ligase (4CL E.C. 6.2.1.12). (a) depicts tyrosine ammonia lyase activity in PAL of graminaceous species. The grey structures in the box represent an older version of the phenylpropanoid pathway in which the ring substitution reactions were thought to occur at the level of the hydroxycinnamic acids and/or hydroxycinnamoyl esters. The enzymes involved in these conversions are (c) coumarate 3-hydroxylase (C3H E.C. 1.14.14.1), (d) caffeate O-methyltransferase (COMT EC 2.1.1.68), (e) ferulate 5-hydroxylase (F5H EC 1.14.13), and (g) caffeoyl-CoA O-methyltransferase (CCoA-OMT EC 2.1.1.104). These enzymes are discussed in more detail in Section 10. Figure 3-4. The general phenylpropanoid pathway. The enzymes involved in this pathway are (a) phenylalanine ammonia lyase (PAL E.C. 4.3.1.5), (b) cinnamic acid 4-hydroxylase (C4H E.C. 1.14.13.11), and (J) 4-coumaric acid CoA ligase (4CL E.C. 6.2.1.12). (a) depicts tyrosine ammonia lyase activity in PAL of graminaceous species. The grey structures in the box represent an older version of the phenylpropanoid pathway in which the ring substitution reactions were thought to occur at the level of the hydroxycinnamic acids and/or hydroxycinnamoyl esters. The enzymes involved in these conversions are (c) coumarate 3-hydroxylase (C3H E.C. 1.14.14.1), (d) caffeate O-methyltransferase (COMT EC 2.1.1.68), (e) ferulate 5-hydroxylase (F5H EC 1.14.13), and (g) caffeoyl-CoA O-methyltransferase (CCoA-OMT EC 2.1.1.104). These enzymes are discussed in more detail in Section 10.
Figure 1.35 Schematic diagram of the phenolic biosynthetic pathway accompanied by the key enzymes involved. Enzyme abbreviations PAL, phenylalanine ammonia-lyase BA2H, benzoic acid 2-hydroxylase C4H, cinnamate 4-hydroxylase COMT-1, caffeic/5-hydroxyferulic acid O-methy I transferase 4CL, p-co um a ra te C o A ligase F5H, ferulate 5-hydroxylase GT, galloyltransferase ACoAC, acetylCoA carboxylase. Figure 1.35 Schematic diagram of the phenolic biosynthetic pathway accompanied by the key enzymes involved. Enzyme abbreviations PAL, phenylalanine ammonia-lyase BA2H, benzoic acid 2-hydroxylase C4H, cinnamate 4-hydroxylase COMT-1, caffeic/5-hydroxyferulic acid O-methy I transferase 4CL, p-co um a ra te C o A ligase F5H, ferulate 5-hydroxylase GT, galloyltransferase ACoAC, acetylCoA carboxylase.
The enc cluster contains four genes (encH, encl, encJ, encP) involved in the biosynthesis of the unusual benzoyl-CoA (185) starter from phenylalanine (186) via a plant-like p-oxidation mechanism (Fig. 32) [208-210]. This pathway is initiated by the unique phenylalanine ammonia-lyase EncP [211], which catalyzes the generation of cinnamic acid (187) from 186. The cinnamate-CoA ligase EncH... [Pg.186]

Durst, F., The correlation of phenylalanine ammonia-lyase and cinnamic acid-hydroxylase activity changes in Jerusalem artichoke tuber tissues, Planta, 132, 221-227, 1976. [Pg.350]

Many amino acids can lose ammonia to give an unsaturated acid. The enzymes that catalyse these reactions are known as amino acid ammonia lyases. The one that concerns us at the end of the shikimic acid pathway is phenylalanine ammonia lyase, which catalyses the elimination of ammonia from phenylalanine to give the common metabolite cinnamic acid. [Pg.1404]

Various commercial routes for the production of L-phenyalanine have been developed because of the utilization of this amino acid in the dipeptide sweetener Aspartame. One route that has been actively pursued is the synthesis of L-phenylalanine from trans-cinnamic acid using the enzyme phenylalanine ammonia lyase (105,106). This enzyme catalyzes the reversible, nonoxidative deamination of L-phenylalanine and can be isolated from various plant and microbial sources (107,108). [Pg.236]

Phenylalanine ammonia-lyase (PAL) eliminates the amino group from phenylalanine (12) to produce cinnamic acid (13). Cinnamate-4-hydroxylase (C4H) hydroxidizes compound (13) to yield p-coumaric acid (14). 4-CoumaroyhCoA-ligase (4CL) complex catalyzed the conversion of p-coumaric acid (14) and coenzyme A (CoA) to 4-coumaroyl-CoA (15) and 3 moles malonyl-CoA (16). Stilbene synthase (STS) converts these two compounds (15,16) into resveratrol of stilbene (7) (Fig. 3) [23,24],... [Pg.10]

Biosynthesis of flavonoids starts with the conversion of phenylalanine or tyrosine to cinnamic acid by phenylalanine ammonia lyase (PAL) (Hahlbrock and Grisebach, 1975). Subsequent reactions are catalyzed by cinnamic acid 4-hydrolase to form 4-hydroxyl cinnamic acid (p-coumaric acid). The p-coumaric acid is then catalyzed by p-coumarate CoA ligase to form p-coumaroyl CoA. [Pg.43]

L-Phenylalanine,which is derived via the shikimic acid pathway,is an important precursor for aromatic aroma components. This amino acid can be transformed into phe-nylpyruvate by transamination and by subsequent decarboxylation to 2-phenylacetyl-CoA in an analogous reaction as discussed for leucine and valine. 2-Phenylacetyl-CoA is converted into esters of a variety of alcohols or reduced to 2-phenylethanol and transformed into 2-phenyl-ethyl esters. The end products of phenylalanine catabolism are fumaric acid and acetoacetate which are further metabolized by the TCA-cycle. Phenylalanine ammonia lyase converts the amino acid into cinnamic acid, the key intermediate of phenylpropanoid metabolism. By a series of enzymes (cinnamate-4-hydroxylase, p-coumarate 3-hydroxylase, catechol O-methyltransferase and ferulate 5-hydroxylase) cinnamic acid is transformed into p-couma-ric-, caffeic-, ferulic-, 5-hydroxyferulic- and sinapic acids,which act as precursors for flavor components and are important intermediates in the biosynthesis of fla-vonoides, lignins, etc. Reduction of cinnamic acids to aldehydes and alcohols by cinnamoyl-CoA NADPH-oxido-reductase and cinnamoyl-alcohol-dehydrogenase form important flavor compounds such as cinnamic aldehyde, cin-namyl alcohol and esters. Further reduction of cinnamyl alcohols lead to propenyl- and allylphenols such as... [Pg.129]


See other pages where Phenylalanine ammonia lyase cinnamic acid is mentioned: [Pg.182]    [Pg.182]    [Pg.1809]    [Pg.112]    [Pg.371]    [Pg.69]    [Pg.64]    [Pg.539]    [Pg.172]    [Pg.84]    [Pg.86]    [Pg.492]    [Pg.99]    [Pg.130]    [Pg.44]    [Pg.47]    [Pg.84]    [Pg.277]    [Pg.385]    [Pg.288]    [Pg.413]    [Pg.57]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Acid ammonia

Acids cinnamic acid

Ammonia acidity

Ammonia lyase

Cinnamate

Cinnamates

Cinnamic 4-

Cinnamic acid

Cinnamic acid/cinnamate

Cinnamics

Lyase

Lyases

Phenylalanin ammonia-lyase

Phenylalanine-cinnamate

© 2024 chempedia.info