Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonoxidative deamination

Various commercial routes for the production of L-phenyalanine have been developed because of the utilization of this amino acid in the dipeptide sweetener Aspartame. One route that has been actively pursued is the synthesis of L-phenylalanine from trans-cinnamic acid using the enzyme phenylalanine ammonia lyase (105,106). This enzyme catalyzes the reversible, nonoxidative deamination of L-phenylalanine and can be isolated from various plant and microbial sources (107,108). [Pg.236]

Nonoxidative deamination is accomplished by several specific enzymes. [Pg.336]

Ammonia is produced by oxidative and nonoxidative deaminations catalyzed by glutaminase and glutamate dehydrogenase (Chapter 17). Ammonia is also released in the purine nucleotide cycle. This cycle is prominent in skeletal muscle and kidney. Aspartate formed via transamination donates its a-amino group in the formation of AMP the amino group is released as ammonia by the formation of IMP. [Pg.509]

Histidine ammonia-lyase is the first enzyme in the degradation pathway of L-histidine and catalyzes the nonoxidative deamination of histidine (12) to form w r-urocanic acid (13) plus ammonia (Equation (3)). Histidine ammonia-lyase is present in several bacteria and in animals. The mechanism for the reaction that is catalyzed by histidine ammonia-lyase is presumed to be similar to that described above for phenylalanine ammonia-lyase (see Scheme 3). [Pg.681]

Mammalian tissues contain enzymes that catalyze the nonoxidative deamination of serine, threonine, and homoserine. Since the postulated reaction mechanism involves a dehydration before the deamination, these enzymes are called dehydrases. L-Serine, L-threonine, and L-homoserine dehydrases have been partially purified and all are specific for the L-amino acid. Serine and threonine dehydrases require pyridoxal phosphate, ATP, and glutathione for activity. Pyridoxal phosphate requires the homoserine enzyme, but the need for ATP and glutathione has not been demonstrated. The reaction is likely to involve the formation of a Schiff base. The homoserine dehydrase has been... [Pg.301]

Serine, Threonine, and Homoserine Dehydrases. This group of enzymes catalyzes a nonoxidative deamination reaction resulting from a primary dehydration of the substrate. Serine, threonine, and homoserine have been shown to be deaminated by bacteria " " and animal tissues (liver) 101. [Pg.22]

The aromatic amino acid L-phenylalanine (primary metabolite) is directed into the phe-nylpropanoid pathway leading to hydroxy-cinnamic acids, lignin and flavonoids by the activity of L-phenylalanine ammonia-lyase (PAL), which brings about its nonoxidative deamination yielding ammonia and tvans-cinnamic acid (Fig. 1). PAL is one of the most studied plant enzymes, and its crystal structure has recently been solved [2]. PAL is related to the histidine and tyrosine ammonia-lyases of amino acid catabolism. A class of bifunctional PALs found in monocotyle-donous plants and yeast can also deaminate tyrosine [3]. A single His residue is responsible for this switch in substrate preference [3, 4]. All three enzymes share a unique MIO (4-methylidene-imidazole-5-one) prosthetic group at the active site. This is formed auto-catalytically from the tripeptide Ala-Ser-Gly by cyclization and dehydration during a late... [Pg.143]

Serine, Threonine, and Homoserine Dehydrases. This group of enzymes catalyzes a nonoxidative deamination reaction resulting from a primary... [Pg.33]

Capsaicin and capsaicinoids undergo Phase I metabolic bioconversion to catechol metabolites via hydroxylation of the vanillyl ring moiety (Lee and Kumar, 1980 Miller et al, 1983). Metabohsm involves oxidative, in addition to non-oxidative, mechanisms. An example of oxidative conversion involves the liver mixed-function oxidase system to convert capsaicin to an electrophilic epoxide, a reactive metabolite (Olajos, 2004). Surh and Lee (1995) have also demonstrated the formation of a phenoxy radical and quinine product the quinine pathway leads to formation of a highly reactive methyl radical (Reilly et al, 2003). The alkyl side chain of capsaicin also undergoes rapid oxidative deamination (Wehmeyer et al, 1990) or hydroxylation (Surh et al, 1995 Reilly et al, 2003) to hydroxycapsaicin as a detoxification pathway. An example of nonoxidative metabolism of capsaicin is hydrolysis of the acid-amide bond to yield vanillylamide and fatty acyl groups (Kawada et al, 1984 Oi et al, 1992). [Pg.161]

Figure 4. Possible routes for the formation of 3-mercaptoproplonate and methanethlol. I = Oxidative deamination or transamination II. Oxidative decarboxylation III. Nonoxidative decarboxylation IV. Oxidation V. Demethylation VI. Demethlolatlon VII. Aerobic/anaerobic catabolism VIII. Michael addition. Figure 4. Possible routes for the formation of 3-mercaptoproplonate and methanethlol. I = Oxidative deamination or transamination II. Oxidative decarboxylation III. Nonoxidative decarboxylation IV. Oxidation V. Demethylation VI. Demethlolatlon VII. Aerobic/anaerobic catabolism VIII. Michael addition.
These enzymes are characterized by a nonoxidative desulfhydration with either a simultaneous or subsequent deamination. Microorganisms and animal tissues (chiefly liver) have been reported to contain these enzymes. The reactions may be formulated as follows ... [Pg.24]

Microorganisms and some plant tissues are capable of catalyzing a multiplicity of nonoxidative amino acid deamination reactions. It is beyond the scope of this chapter to review these systems, since for the most part they have not been studied with cell-free preparations. Two exceptions to the latter statement are the aspartase and tryptophanase systems. The latter is discussed in the chapter, Carbon Catabolism of Amino Acids. [Pg.25]

Other types of nonoxidative amino acid deamination are as follows ... [Pg.25]


See other pages where Nonoxidative deamination is mentioned: [Pg.434]    [Pg.351]    [Pg.681]    [Pg.187]    [Pg.498]    [Pg.1]    [Pg.22]    [Pg.434]    [Pg.351]    [Pg.681]    [Pg.187]    [Pg.498]    [Pg.1]    [Pg.22]    [Pg.139]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Nonoxide

Nonoxides

Nonoxidizing

© 2024 chempedia.info